Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 110 sách bài tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Bảng sau đây ghi lại khoảng thời gian hoàn thành đường bơi 500 m của một số học viên. a) Xác định khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu phép nhóm trên (kết quả làm tròn đến hàng phần trăm). b) Xác định phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên. c) Xác định số giá trị ngoại lệ trong mẫu số liệu trên.
Đề bài
Bảng sau đây ghi lại khoảng thời gian hoàn thành đường bơi 500 m của một số học viên.
a) Xác định khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu phép nhóm trên (kết quả làm tròn đến hàng phần trăm).
b) Xác định phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.
c) Xác định số giá trị ngoại lệ trong mẫu số liệu trên.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).
‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:
Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)
trong đó:
• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;
• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);
• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);
• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).
‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:
\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)
‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).
‒ Nếu \({Q_1} - 1,5\Delta Q > a\) hoặc \({Q_3} + 1,5\Delta Q < a\) thì giá trị \(a\) là giá trị ngoại lệ.
Lời giải chi tiết
a) Ta có bảng sau:
• Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 14 - 8 = 6\) (phút).
• Tứ phân vị của mẫu số liệu ghép nhóm:
Cỡ mẫu: \(n = 10 + 16 + 24 + 35 + 10 + 5 = 100\)
Gọi \({x_1};{x_2};...;{x_{100}}\) là mẫu số liệu gốc gồm thời gian hoàn thành đường bơi 500 m của 100 học viên theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in \left[ {9;10} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 9 + \frac{{\frac{{1.100}}{4} - 10}}{{16}}\left( {10 - 9} \right) = \frac{{159}}{{16}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {11;12} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 11 + \frac{{\frac{{3.100}}{4} - \left( {10 + 16 + 24} \right)}}{{35}}\left( {12 - 11} \right) = \frac{{82}}{7}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
\(\Delta Q = {Q_3} - {Q_3} = \frac{{82}}{7} - \frac{{159}}{{16}} = \frac{{199}}{{112}} \approx 1,78\) (phút).
b) • Phương sai của mẫu số liệu ghép nhóm về thời gian hoàn thành đường bơi 500 m của 100 học viên:
Số trung bình của mẫu số liệu ghép nhóm là:
\(\overline x = \frac{{10.8,5 + 16.9,5 + 24.10,5 + 35.11,5 + 10.12,5 + 5.13,5}}{{100}} = \frac{{271}}{{25}}\)
Phương sai của mẫu số liệu ghép nhóm đó là:
\({S^2} = \frac{1}{{100}}\left( {{{10.8,5}^2} + {{16.9,5}^2} + {{24.10,5}^2} + {{35.11,5}^2} + {{10.12,5}^2} + {{5.13,5}^2}} \right) - {\left( {\frac{{271}}{{25}}} \right)^2} = 1,6444\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm đó là: \(S = \sqrt {{S^2}} = \sqrt {1,6444} \approx 1,28\)
c) Ta có:
\({Q_1} - 1,5\Delta Q = \frac{{159}}{{16}} - 1,5.\frac{{199}}{{112}} = \frac{{1629}}{{224}} < 8\) và \({{Q}_{3}}+1,5\Delta Q=\frac{82}{7}+1,5.\frac{199}{112}=\frac{3221}{224}.14\)
Do đó mẫu số liệu ghép nhóm không có giá trị ngoại lệ.
Bài 6 trang 110 sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số. Việc nắm vững các khái niệm và kỹ năng này là vô cùng quan trọng để giải quyết các bài toán liên quan đến hàm số trong kỳ thi THPT Quốc gia.
Bài tập 6 thường bao gồm các dạng bài sau:
Để giải bài tập 6 trang 110 một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Xét hàm số y = x3 - 3x2 + 2. Hãy tìm cực trị của hàm số.
Giải:
Vậy hàm số đạt cực đại tại điểm (0, 2) và cực tiểu tại điểm (2, -2).
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Ngoài ra, bạn có thể tham khảo các tài liệu học tập trực tuyến và các video hướng dẫn giải bài tập trên giaitoan.edu.vn.
Việc học Toán đòi hỏi sự kiên trì và luyện tập thường xuyên. Hãy dành thời gian ôn tập lý thuyết và làm bài tập để nắm vững kiến thức. Đừng ngần ngại hỏi thầy cô hoặc bạn bè nếu bạn gặp khó khăn trong quá trình học tập. Chúc bạn học tốt!
Dạng bài | Phương pháp giải |
---|---|
Tìm đạo hàm | Sử dụng công thức đạo hàm và quy tắc đạo hàm |
Xác định cực trị | Giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm |
Xác định khoảng đơn điệu | Xác định dấu của đạo hàm trên các khoảng |