Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 62 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Chúng tôi cam kết cung cấp kiến thức chính xác và phương pháp giải bài tập hiệu quả.
Đường thẳng đi qua điểm (Ileft( {1; - 1; - 1} right)) và nhận (overrightarrow u = left( { - 2;3; - 5} right)) làm vectơ chỉ phương có phương trình chính tắc là A. (frac{{x + 1}}{{ - 2}} = frac{{y - 1}}{3} = frac{{z - 1}}{{ - 5}}). B. (frac{{x - 1}}{{ - 2}} = frac{{y + 1}}{3} = frac{{z + 1}}{{ - 5}}). C. (frac{{x - 2}}{1} = frac{{y + 3}}{{ - 1}} = frac{{z - 5}}{{ - 1}}). D. (frac{{x + 2}}{1} = frac{{y - 3}}{{ - 1}} = frac{{z + 5}}{{ - 1}}).
Đề bài
Đường thẳng đi qua điểm \(I\left( {1; - 1; - 1} \right)\) và nhận \(\overrightarrow u = \left( { - 2;3; - 5} \right)\) làm vectơ chỉ phương có phương trình chính tắc là
A. \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{{ - 5}}\).
B. \(\frac{{x - 1}}{{ - 2}} = \frac{{y + 1}}{3} = \frac{{z + 1}}{{ - 5}}\).
C. \(\frac{{x - 2}}{1} = \frac{{y + 3}}{{ - 1}} = \frac{{z - 5}}{{ - 1}}\).
D. \(\frac{{x + 2}}{1} = \frac{{y - 3}}{{ - 1}} = \frac{{z + 5}}{{ - 1}}\).
Phương pháp giải - Xem chi tiết
Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).
Lời giải chi tiết
Đường thẳng đi qua điểm \(I\left( {1; - 1; - 1} \right)\) và nhận \(\overrightarrow u = \left( { - 2;3; - 5} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 1}}{{ - 2}} = \frac{{y + 1}}{3} = \frac{{z + 1}}{{ - 5}}\).
Chọn B.
Bài 7 trang 62 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn, và các ứng dụng khác của đạo hàm trong toán học.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 7 trang 62, bạn cần:
Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Giải:
f'(x) = d/dx (3x2 + 2x - 1) = 6x + 2
Một số lưu ý quan trọng khi giải bài tập về đạo hàm:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Bài 7 trang 62 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Bằng cách nắm vững các quy tắc tính đạo hàm, phân tích cấu trúc hàm số, và thực hành tính toán cẩn thận, bạn có thể giải quyết hiệu quả bài tập này và áp dụng kiến thức vào các bài toán thực tế. Chúc bạn học tập tốt!