Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 22 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 22 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Gọi (D) là hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^2}) và (y = sqrt x ) (Hình 14). a) Tính diện tích của (D). b) Tinh thể tích của khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).

Đề bài

Gọi \(D\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^2}\) và \(y = \sqrt x \) (Hình 14).

a) Tính diện tích của \(D\).

b) Tinh thể tích của khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\).

Giải bài 8 trang 22 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 22 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

‒ Sử dụng công thức: Tính thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = a,x = b\) quay quanh trục \(Ox\) là: \(V = \pi \int\limits_a^b {\left| {{{\left[ {f\left( x \right)} \right]}^2} - {{\left[ {g\left( x \right)} \right]}^2}} \right|dx} \).

Lời giải chi tiết

a) \(S = \int\limits_0^1 {\left| {\sqrt x - {x^2}} \right|dx} = \int\limits_0^1 {\left( {\sqrt x - {x^2}} \right)dx} = \int\limits_0^1 {\left( {{x^{\frac{1}{2}}} - {x^2}} \right)dx} = \left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = \frac{1}{3}\).

b) \(V = \pi \int\limits_0^1 {\left| {{{\left( {\sqrt x } \right)}^2} - {{\left( {{x^2}} \right)}^2}} \right|dx} = \pi \int\limits_0^1 {\left| {x - {x^4}} \right|dx} \)

\(x - {x^4} = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 1\).

\(V = \pi \int\limits_0^1 {\left| {x - {x^4}} \right|dx} = \left| {\pi \int\limits_0^1 {\left( {x - {x^4}} \right)dx} } \right| = \left| {\left. {\pi \left( {\frac{{{x^2}}}{2} - \frac{{{x^5}}}{5}} \right)} \right|_0^1} \right| = \frac{{3\pi }}{{10}}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 22 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 8 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.

Nội dung chi tiết bài 8 trang 22

Bài 8 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn giản và phức tạp, sử dụng các quy tắc đạo hàm đã học.
  2. Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm cấp nhất.
  3. Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình, hoặc để chứng minh một đẳng thức.
  4. Bài toán thực tế: Một số bài tập liên hệ với các bài toán thực tế, yêu cầu học sinh vận dụng kiến thức đạo hàm để giải quyết.

Hướng dẫn giải chi tiết bài 8 trang 22

Để giúp bạn giải bài 8 trang 22 một cách hiệu quả, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng câu hỏi. Dưới đây là một ví dụ:

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Giải:

Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:

f'(x) = 3x2 + 4x - 5

Các lưu ý khi giải bài 8 trang 22

Để đạt kết quả tốt nhất khi giải bài 8 trang 22, bạn cần lưu ý những điều sau:

  • Nắm vững các quy tắc đạo hàm: Đây là nền tảng cơ bản để giải quyết các bài toán về đạo hàm.
  • Thực hành thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng máy tính bỏ túi hoặc các phần mềm toán học để kiểm tra kết quả hoặc hỗ trợ tính toán.

Mở rộng kiến thức về đạo hàm

Đạo hàm là một khái niệm quan trọng trong toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Để mở rộng kiến thức về đạo hàm, bạn có thể tìm hiểu thêm về:

  • Đạo hàm của các hàm số lượng giác: sin(x), cos(x), tan(x), cot(x),...
  • Đạo hàm của hàm số mũ và logarit: ex, ln(x),...
  • Ứng dụng của đạo hàm trong việc tìm cực trị của hàm số: Tìm điểm cực đại, cực tiểu của hàm số.
  • Ứng dụng của đạo hàm trong việc khảo sát hàm số: Xác định khoảng đồng biến, nghịch biến, điểm uốn của hàm số.

Kết luận

Bài 8 trang 22 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng để rèn luyện kỹ năng tính đạo hàm và vận dụng các quy tắc đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách hiệu quả và tự tin hơn trong các kỳ thi. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12