Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 15 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 8 trang 15 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Tính các tích phân sau: a) (intlimits_{ - 1}^2 {left| {{x^2} + x - 2} right|dx} ); b) (intlimits_{ - 1}^1 {left| {{e^x} - 1} right|dx} ).

Đề bài

Tính các tích phân sau:

a) \(\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|dx} \);

b) \(\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|dx} \).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng tính chất:

• \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \).

• \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} \).

Lời giải chi tiết

a) \({x^2} + x - 2 = 0 \Leftrightarrow x = 1\) hoặc \({\rm{x}} = - 2\) (loại)

Bảng xét dấu trên đoạn \(\left[ { - 1;2} \right]\):

Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo 2

Do đó:

\(\begin{array}{l}\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|dx} = \int\limits_{ - 1}^1 {\left| {{x^2} + x - 2} \right|dx} + \int\limits_1^2 {\left| {{x^2} + x - 2} \right|dx} = \int\limits_{ - 1}^1 {\left[ { - \left( {{x^2} + x - 2} \right)} \right]dx} + \int\limits_1^2 {\left( {{x^2} + x - 2} \right)dx} \\ = - \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right)} \right|_{ - 1}^1 + \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right)} \right|_1^2 = \frac{{31}}{6}\end{array}\)

b) \({e^x} - 1 = 0 \Leftrightarrow {e^x} = 1 \Leftrightarrow x = 0\).

Bảng xét dấu trên đoạn \(\left[ { - 1;1} \right]\):

Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo 3

Do đó:

\(\begin{array}{l}\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|dx} = \int\limits_{ - 1}^0 {\left| {{e^x} - 1} \right|dx} + \int\limits_0^1 {\left| {{e^x} - 1} \right|dx} = \int\limits_{ - 1}^0 {\left[ { - \left( {{e^x} - 1} \right)} \right]dx} + \int\limits_0^1 {\left( {{e^x} - 1} \right)dx} \\ = - \left. {\left( {{e^x} - x} \right)} \right|_{ - 1}^0 + \left. {\left( {{e^x} - x} \right)} \right|_0^1 = e + \frac{1}{e} - 2\end{array}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 15 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 8 trang 15 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học khác ở bậc đại học.

Nội dung chi tiết bài 8 trang 15

Bài 8 bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số. Học sinh cần tính đạo hàm của các hàm số đơn thức, đa thức, hàm hợp và hàm lượng giác.
  • Dạng 2: Tìm đạo hàm cấp hai. Bài tập này yêu cầu học sinh tính đạo hàm bậc hai của hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Dạng 3: Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị của hàm số. Học sinh cần tìm điểm cực đại, cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán thực tế. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các vấn đề trong thực tế, ví dụ như tìm vận tốc, gia tốc của một vật chuyển động.

Hướng dẫn giải chi tiết từng bài tập

Bài 8.1

Cho hàm số f(x) = x3 - 3x2 + 2x. Tính f'(x).

Giải:

Áp dụng công thức đạo hàm của hàm số đa thức, ta có:

f'(x) = 3x2 - 6x + 2

Bài 8.2

Cho hàm số y = sin(2x). Tính y'.

Giải:

Áp dụng công thức đạo hàm của hàm hợp, ta có:

y' = cos(2x) * 2 = 2cos(2x)

Bài 8.3

Tìm đạo hàm cấp hai của hàm số g(x) = x4 - 4x3 + 6x2 - 4x + 1.

Giải:

Đầu tiên, tính đạo hàm bậc nhất:

g'(x) = 4x3 - 12x2 + 12x - 4

Sau đó, tính đạo hàm cấp hai:

g''(x) = 12x2 - 24x + 12

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm

Kết luận

Bài 8 trang 15 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12