Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 11 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 11 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Chứng minh rằng: a) Phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm. b) Phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.
Đề bài
Chứng minh rằng:
a) Phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm.
b) Phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.
Phương pháp giải - Xem chi tiết
Xét hàm số \(y = f\left( x \right)\), lập bảng biến thiên, xem xét giao điểm của đồ thị hàm số với đường thẳng \(y = 0\) và kết luận.
Lời giải chi tiết
a) Đặt \(y = {x^3} + 5{x^2} - 8{\rm{x}} + 4\).
Tập xác định: \(D = \mathbb{R}\).
Ta có \(y' = 3{x^2} + 10x - 8;y' = 0 \Leftrightarrow x = - 4\) hoặc \({\rm{x}} = \frac{2}{3}\).
Bảng biến thiên:
Từ bảng biển thiên, ta thấy đường thẳng \(y = 0\) giao với đồ thị của hàm số tại đúng một điểm trong khoảng \(\left( { - \infty ; - 4} \right)\). Do đó phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm.
b) Đặt \(y = - {x^3} + 3{x^2} + 24x - 1\).
Tập xác định: \(D = \mathbb{R}\).
Ta có \(y' = - 3{x^2} + 6x + 24;y' = 0 \Leftrightarrow x = 4\) hoặc \({\rm{x}} = - 2\).
Bảng biến thiên:
Từ bảng biển thiên, ta thấy đường thẳng \(y = 0\) giao với đồ thị của hàm số tại ba điểm phân biệt. Do đó phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.
Bài 8 trang 11 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.
Bài 8 trang 11 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 8 trang 11, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Chúng tôi sẽ sử dụng các bước giải rõ ràng, dễ hiểu, kèm theo các giải thích cụ thể để bạn có thể tự học và áp dụng vào các bài tập tương tự.
Giải:
Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:
f'(x) = 3x2 + 4x - 5
Giải:
Đầu tiên, ta tính đạo hàm cấp một:
g'(x) = cos(x) - sin(x)
Sau đó, ta tính đạo hàm cấp hai:
g''(x) = -sin(x) - cos(x)
Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học toán 12 hiệu quả:
Bài 8 trang 11 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng để củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc học toán 12 và đạt kết quả tốt trong các kỳ thi.