Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 24 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 9 trang 24 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 9 trang 24 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (K) là một khoảng trên (mathbb{R}); (Fleft( x right)) là một nguyên hàm của hàm số (fleft( x right)) trên (K); (Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên (K). a) Nếu (Fleft( x right) = Gleft( x right)) thì (fleft( x right) = gleft( x right)). b) Nếu (fleft( x right) = gleft( x right)) thì (Fleft( x right) = Gleft( x right)). c) (int {fleft( x right)dx} = Fleft( x r

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho \(K\) là một khoảng trên \(\mathbb{R}\); \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\); \(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\).

a) Nếu \(F\left( x \right) = G\left( x \right)\) thì \(f\left( x \right) = g\left( x \right)\).

b) Nếu \(f\left( x \right) = g\left( x \right)\) thì \(F\left( x \right) = G\left( x \right)\).

c) \(\int {f\left( x \right)dx} = F\left( x \right) + C,C \in \mathbb{R}\).

d) \(\int {f'\left( x \right)dx} = F\left( x \right) + C,C \in \mathbb{R}\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng định nghĩa nguyên hàm.

Lời giải chi tiết

\(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nên ta có \(F'\left( x \right) = f\left( x \right)\).

\(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\) nên ta có \(G'\left( x \right) = g\left( x \right)\).

Nếu \(F\left( x \right) = G\left( x \right)\) thì \(F'\left( x \right) = G'\left( x \right)\) hay \(f\left( x \right) = g\left( x \right)\). Vậy a) đúng.

\(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nên ta có \(\int {f\left( x \right)dx} = F\left( x \right) + C\).

\(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\) nên ta có \(\int {g\left( x \right)dx} = G\left( x \right) + C\).

Nếu \(f\left( x \right) = g\left( x \right)\) thì \(\int {f\left( x \right)dx} = \int {g\left( x \right)dx} + C\) hay \(F\left( x \right) = G\left( x \right) + C\). Vậy b) sai, c) đúng.

Theo định nghĩa nguyên hàm ta có \(\int {f'\left( x \right)dx} = f\left( x \right) + C\). Vậy d) sai.

a) Đ.

b) S.

c) Đ.

d) S.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 9 trang 24 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 9 trang 24 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung chi tiết bài 9 trang 24

Bài 9 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước. Đây là dạng bài tập cơ bản nhất, đòi hỏi học sinh phải nhớ và áp dụng chính xác các quy tắc tính đạo hàm.
  2. Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số. Dạng bài tập này đòi hỏi học sinh phải tính đạo hàm cấp một trước, sau đó tính đạo hàm của đạo hàm cấp một.
  3. Ứng dụng đạo hàm để giải phương trình: Yêu cầu sử dụng đạo hàm để giải phương trình. Dạng bài tập này đòi hỏi học sinh phải hiểu rõ mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số.
  4. Bài toán thực tế: Một số bài tập có thể liên hệ với các bài toán thực tế, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết.

Hướng dẫn giải chi tiết bài 9 trang 24

Để giải bài 9 trang 24 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn có thể tham khảo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các hàm số cho trước và các điều kiện ràng buộc.
  2. Chọn quy tắc tính đạo hàm phù hợp: Dựa vào dạng hàm số, chọn quy tắc tính đạo hàm phù hợp (quy tắc đạo hàm của hàm số cơ bản, quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp,...).
  3. Thực hiện tính đạo hàm: Áp dụng quy tắc đã chọn để tính đạo hàm của hàm số. Lưu ý thực hiện các phép toán một cách cẩn thận để tránh sai sót.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

f'(x) = d/dx (3x2 + 2x - 1) = 6x + 2

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).

Giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Lưu ý quan trọng

  • Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu học tập và các nguồn thông tin trực tuyến để mở rộng kiến thức.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập Toán 12 Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Các bài giảng trực tuyến về đạo hàm
  • Các trang web học toán trực tuyến

Kết luận

Bài 9 trang 24 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 12