Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho hàm số (y = frac{{{x^2} - 2{rm{x}} + 1}}{{{rm{x}} - 2}}). Khi đó A. Hàm số đồng biến trên các khoảng (left( { - infty ;1} right)) và (left( {3; + infty } right)). B. Hàm số đồng biến trên các khoảng (left( { - 1;2} right)) và (left( {2;3} right)). C. Hàm số đồng biến trên (left( { - infty ;2} right)). D. Hàm số đồng biến trên (left( {1; + infty } right)).
Đề bài
Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 1}}{{{\rm{x}} - 2}}\). Khi đó
A. Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\).
B. Hàm số đồng biến trên các khoảng \(\left( { - 1;2} \right)\) và \(\left( {2;3} \right)\).
C. Hàm số đồng biến trên \(\left( { - \infty ;2} \right)\).
D. Hàm số đồng biến trên \(\left( {1; + \infty } \right)\).
Phương pháp giải - Xem chi tiết
Các bước để xét tính đơn điệu của hàm số \(f\left( x \right)\):
Bước 1. Tìm tập xác định \(D\) của hàm số.
Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.
Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Lời giải chi tiết
Xét hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 1}}{{{\rm{x}} - 2}}\).
Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có
\(\begin{array}{l}y' = \frac{{{{\left( {{x^2} - 2{\rm{x}} + 1} \right)}^\prime }\left( {{\rm{x}} - 2} \right) - \left( {{x^2} - 2{\rm{x}} + 1} \right){{\left( {{\rm{x}} - 2} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}}\\ = \frac{{\left( {2{\rm{x}} - 2} \right)\left( {{\rm{x}} - 2} \right) - \left( {{x^2} - 2{\rm{x}} + 1} \right)}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}} = \frac{{{x^2} - 4{\rm{x}} + 3}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}}\end{array}\)
\(y' = 0 \Leftrightarrow x = 1\) hoặc \({\rm{x}} = 3\).
Bảng biến thiên:
Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\), nghịch biến trên các khoảng \(\left( {1;2} \right)\) và \(\left( {2;3} \right)\).
Chọn A.
Bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo:
Giải:
f'(x) = 2x + 2
f'(1) = 2(1) + 2 = 4
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.
Giải:
g'(x) = cos(x) - sin(x)
Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).
Khi giải bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần lưu ý những điều sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:
Bài 4 trang 33 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các bạn học sinh sẽ tự tin hơn khi làm bài tập Toán 12.