Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 61 một cách đầy đủ và chính xác.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Cho ba mặt phẳng \(\left( \alpha \right):3x + 3y + 6z + 13 = 0,\left( \beta \right):2x + 2y - 2z + 9 = 0\) và \(\left( \gamma \right):x - y - 21 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\). B. \(\left( \gamma \right) \bot \left( \beta \right)\). C. \(\left( \alpha \right)\parallel \left( \beta \right)\). D. \(\left( \alpha \right) \bot \left( \gamma \right)\).

Đề bài

Cho ba mặt phẳng \(\left( \alpha \right):3x + 3y + 6z + 13 = 0,\left( \beta \right):2x + 2y - 2z + 9 = 0\) và \(\left( \gamma \right):x - y - 21 = 0\). Trong các mệnh đề sau, mệnh đề nào sai?

A. \(\left( \alpha \right) \bot \left( \beta \right)\).

B. \(\left( \gamma \right) \bot \left( \beta \right)\).

C. \(\left( \alpha \right)\parallel \left( \beta \right)\).

D. \(\left( \alpha \right) \bot \left( \gamma \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo 1

Cho hai mặt phẳng \(\left( {{\alpha _1}} \right):{A_1}x + {B_1}y + {C_1}{\rm{z}} + {D_1} = 0\) và \(\left( {{\alpha _2}} \right):{A_2}x + {B_2}y + {C_2}{\rm{z}} + {D_2} = 0\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\).

Khi đó \(\left( {{\alpha _1}} \right)\parallel \left( {{\alpha _2}} \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} = k\overrightarrow {{n_2}} \\{D_1} \ne k{{\rm{D}}_2}\end{array} \right.\left( {k \in \mathbb{R}} \right)\)

\(\left( {{\alpha _1}} \right) \bot \left( {{\alpha _2}} \right) \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow {A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2} = 0\)

Lời giải chi tiết

\(\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {3;3;6} \right)\).

\(\left( \beta \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {2;2; - 2} \right)\).

\(\left( \gamma \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_3}} = \left( {1;0; - 1} \right)\).

Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 3.2 + 3.2 + 6.\left( { - 2} \right) = 0\) nên \(\left( \alpha \right) \bot \left( \beta \right)\). Vậy a) đúng, c) sai.

Chọn C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 61 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài 4 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 4 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm bằng cách giải các phương trình bậc nhất, bậc hai, hoặc các phương trình phức tạp hơn.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, hoặc giải quyết các bài toán liên quan đến tốc độ thay đổi.

Hướng dẫn giải chi tiết bài 4 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giải bài 4 trang 61 một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các điều kiện ràng buộc.
  2. Xác định kiến thức cần sử dụng: Xác định các kiến thức về đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm cần sử dụng để giải quyết bài toán.
  3. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải quyết bài toán, từ việc biến đổi biểu thức đến việc tìm nghiệm.
  4. Thực hiện giải: Thực hiện các bước đã lập kế hoạch, chú ý đến việc trình bày lời giải một cách rõ ràng, logic, và chính xác.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính đúng đắn và hợp lý.

Ví dụ minh họa giải bài 4 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các công thức đạo hàm cơ bản: Việc nắm vững các công thức đạo hàm cơ bản là điều kiện cần thiết để giải quyết các bài tập về đạo hàm.
  • Luyện tập thường xuyên: Việc luyện tập thường xuyên sẽ giúp bạn làm quen với các dạng bài tập khác nhau và rèn luyện kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng các công cụ hỗ trợ như máy tính bỏ túi, phần mềm giải toán, hoặc các trang web học toán online để kiểm tra kết quả và tìm kiếm lời giải.
  • Tham khảo các tài liệu học tập: Bạn có thể tham khảo các sách giáo khoa, sách bài tập, hoặc các tài liệu học tập khác để bổ sung kiến thức và kỹ năng.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Chân trời sáng tạo
  • Sách bài tập Toán 12 - Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 4 trang 61 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ giải quyết thành công bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12