Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 8 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng (x) (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm (x) để thể tích của hình hộp là lớn nhất.
Đề bài
Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng \(x\) (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm \(x\) để thể tích của hình hộp là lớn nhất.
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính thể tích hình hộp chữ nhật để tính thể tích \(V\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(V\left( x \right)\).
Lời giải chi tiết
Theo đề bài ta có: Cạnh của hộp là: \(12 - 2{\rm{x}}\left( {cm} \right)\).
Chiều cao của hộp là: \({\rm{x}}\left( {cm} \right)\).
Thể tích của hộp là: \(V\left( x \right) = x{\left( {12 - 2{\rm{x}}} \right)^2} = 4{{\rm{x}}^3} - 48{{\rm{x}}^2} + 144{\rm{x}}\left( {c{m^3}} \right)\).
Vì cạnh của hộp không âm nên \(12 - 2{\rm{x}} \ge 0 \Leftrightarrow x \le 6\)
Xét hàm số \(V\left( x \right) = 4{{\rm{x}}^3} - 48{{\rm{x}}^2} + 144{\rm{x}}\) trên đoạn \(\left[ {0;6} \right]\).
Ta có: \(V'\left( x \right) = 12{{\rm{x}}^2} - 96{\rm{x}} + 144\)
\(V'\left( x \right) = 0 \Leftrightarrow x = 6\) hoặc \(x = 2\).
\(V\left( 0 \right) = 0;V\left( 2 \right) = 128;V\left( 6 \right) = 0\)
Vậy \(\mathop {\max }\limits_{\left[ {0;6} \right]} V\left( x \right) = V\left( 2 \right) = 128\).
Vậy với \(x = 2\left( {cm} \right)\) thì thể tích của hình hộp là lớn nhất.
Bài 8 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học khác ở bậc đại học.
Bài 8 bao gồm các dạng bài tập sau:
Để tính đạo hàm của hàm số f(x) = 3x^4 - 2x^2 + 5x - 1, ta áp dụng quy tắc đạo hàm của tổng và hiệu, cũng như quy tắc đạo hàm của lũy thừa:
f'(x) = d/dx (3x^4) - d/dx (2x^2) + d/dx (5x) - d/dx (1)
f'(x) = 3 * 4x^3 - 2 * 2x + 5 - 0
f'(x) = 12x^3 - 4x + 5
Để tìm đạo hàm cấp hai của hàm số y = sin(2x), ta thực hiện các bước sau:
Bước 1: Tính đạo hàm cấp một: y' = cos(2x) * 2 = 2cos(2x)
Bước 2: Tính đạo hàm cấp hai: y'' = -sin(2x) * 2 * 2 = -4sin(2x)
Để tìm cực trị của hàm số y = x^3 - 3x^2 + 2, ta thực hiện các bước sau:
Bước 1: Tính đạo hàm cấp một: y' = 3x^2 - 6x
Bước 2: Giải phương trình y' = 0 để tìm điểm cực trị: 3x^2 - 6x = 0 => x(3x - 6) = 0 => x = 0 hoặc x = 2
Bước 3: Tính đạo hàm cấp hai: y'' = 6x - 6
Bước 4: Kiểm tra dấu của đạo hàm cấp hai tại các điểm cực trị:
Bài 8 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các bạn học sinh sẽ học tốt môn Toán 12 và đạt kết quả cao trong kỳ thi THPT Quốc gia.