Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 23 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất.
Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để tự tin giải quyết các bài toán tương tự.
Chọn đáp án đúng. Phát biểu nào sau đây đúng? A. (int {{3^{2{rm{x}}}}dx} = {9^x}.ln 9 + C). B. (int {{3^{2{rm{x}}}}dx} = frac{{{9^x}}}{{2ln 3}} + C). C. (int {{3^{2{rm{x}}}}dx} = {left( {frac{{{3^x}}}{{ln 3}}} right)^2} + C). D. (int {{3^{2{rm{x}}}}dx} = frac{{{3^{2x}}}}{{ln 3}} + C).
Đề bài
Chọn đáp án đúng.
Phát biểu nào sau đây đúng?
A. \(\int {{3^{2{\rm{x}}}}dx} = {9^x}.\ln 9 + C\).
B. \(\int {{3^{2{\rm{x}}}}dx} = \frac{{{9^x}}}{{2\ln 3}} + C\).
C. \(\int {{3^{2{\rm{x}}}}dx} = {\left( {\frac{{{3^x}}}{{\ln 3}}} \right)^2} + C\).
D. \(\int {{3^{2{\rm{x}}}}dx} = \frac{{{3^{2x}}}}{{\ln 3}} + C\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
Lời giải chi tiết
\(\int {{3^{2{\rm{x}}}}dx} = \int {{9^{\rm{x}}}dx} = \frac{{{9^x}}}{{\ln 9}} + C = \frac{{{9^x}}}{{2\ln 3}} + C\).
Chọn B.
Bài 3 trang 23 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn, và các ứng dụng khác của đạo hàm trong toán học.
Bài 3 thường bao gồm các dạng bài tập sau:
Để tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1, ta áp dụng quy tắc tính đạo hàm của tổng và hiệu, cũng như quy tắc tính đạo hàm của lũy thừa:
f'(x) = (x^3)' - (2x^2)' + (5x)' - (1)'
f'(x) = 3x^2 - 4x + 5 - 0
f'(x) = 3x^2 - 4x + 5
Để tìm đạo hàm cấp hai của hàm số g(x) = sin(2x), ta thực hiện các bước sau:
g'(x) = (sin(2x))' = cos(2x) * (2x)' = 2cos(2x)
g''(x) = (2cos(2x))' = 2 * (-sin(2x)) * (2x)' = -4sin(2x)
Giả sử vận tốc của một vật tại thời điểm t được cho bởi hàm số v(t) = 3t^2 - 6t + 2. Để tìm vận tốc của vật tại thời điểm t = 2, ta thay t = 2 vào hàm v(t):
v(2) = 3(2)^2 - 6(2) + 2 = 12 - 12 + 2 = 2
Vậy vận tốc của vật tại thời điểm t = 2 là 2.
Để hiểu rõ hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo các tài liệu sau:
Bài 3 trang 23 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.