Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 24 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 24 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 24 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\).

Đề bài

Chọn đáp án đúng.

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là

A. 1.

B. 3.

C. \(2\ln 2 - 1\).

D. \(3 - 4\ln 2\).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

\(S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx} \)

\({e^x} - 2 = 0 \Leftrightarrow x = \ln 2\)

\(\begin{array}{l}S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx} = \int\limits_0^{\ln 2} {\left| {{e^x} - 2} \right|dx} + \int\limits_{\ln 2}^{\ln 4} {\left| {{e^x} - 2} \right|dx} = \left| {\int\limits_0^{\ln 2} {\left( {{e^x} - 2} \right)dx} } \right| + \left| {\int\limits_{\ln 2}^{\ln 4} {\left( {{e^x} - 2} \right)dx} } \right|\\ = \left| {\left. {\left( {{e^x} - 2x} \right)} \right|_0^{\ln 2}} \right| + \left| {\left. {\left( {{e^x} - 2x} \right)} \right|_{\ln 2}^{\ln 4}} \right| = \left( {2\ln 2 - 1} \right) + \left( {2 - 2\ln 2} \right) = 1\end{array}\)

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 24 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 8 trang 24 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.

Nội dung chi tiết bài 8 trang 24

Bài 8 trang 24 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn giản và phức tạp, sử dụng các quy tắc đạo hàm đã học.
  2. Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm cấp nhất.
  3. Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình, hoặc để chứng minh một đẳng thức.
  4. Bài toán thực tế: Một số bài tập liên hệ đạo hàm với các bài toán thực tế, giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong đời sống.

Hướng dẫn giải chi tiết bài 8 trang 24

Để giải bài 8 trang 24 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  • Nắm vững các quy tắc đạo hàm: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit, và các quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Phân tích đề bài: Xác định rõ yêu cầu của đề bài, các hàm số cần tính đạo hàm, và các quy tắc đạo hàm cần sử dụng.
  • Thực hiện tính toán cẩn thận: Tránh sai sót trong quá trình tính toán, đặc biệt là khi áp dụng các quy tắc đạo hàm phức tạp.
  • Kiểm tra lại kết quả: Sau khi tính toán xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Ví dụ 2: Tính đạo hàm của hàm số g(x) = sin(x) * cos(x).

Giải:

g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)

Lưu ý quan trọng

Khi giải bài 8 trang 24 sách bài tập Toán 12 Chân trời sáng tạo, bạn cần lưu ý:

  • Sử dụng đúng công thức đạo hàm: Đảm bảo sử dụng đúng công thức đạo hàm cho từng loại hàm số.
  • Áp dụng quy tắc đạo hàm một cách chính xác: Tránh nhầm lẫn khi áp dụng các quy tắc đạo hàm phức tạp.
  • Rút gọn biểu thức đạo hàm: Sau khi tính toán xong, hãy rút gọn biểu thức đạo hàm để có kết quả cuối cùng đơn giản nhất.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 8 trang 24 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12