Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 76 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 76 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 76 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 8 trang 76 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho ba điểm (Aleft( {0;2; - 1} right),Bleft( { - 5;4;2} right),Cleft( { - 1;0;5} right)). Tìm toạ độ trọng tâm (G) của tam giác (ABC).

Đề bài

Cho ba điểm \(A\left( {0;2; - 1} \right),B\left( { - 5;4;2} \right),C\left( { - 1;0;5} \right)\). Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 76 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):

\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

Lời giải chi tiết

\(G\left( {\frac{{0 + \left( { - 5} \right) + \left( { - 1} \right)}}{3};\frac{{2 + 4 + 0}}{3};\frac{{\left( { - 1} \right) + 2 + 5}}{3}} \right) \Leftrightarrow G\left( { - 2;2;2} \right)\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 76 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 76 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 8 trang 76 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung bài 8 trang 76 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 8 bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số đơn giản sử dụng các quy tắc cơ bản.
  • Dạng 2: Tính đạo hàm của hàm số phức tạp bằng cách kết hợp các quy tắc đạo hàm.
  • Dạng 3: Tìm đạo hàm cấp hai của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Lời giải chi tiết bài 8 trang 76 Sách bài tập Toán 12 - Chân trời sáng tạo

Câu 1: Tính đạo hàm của các hàm số sau:

  1. f(x) = 3x2 + 2x - 1
  2. g(x) = (x2 + 1)(x - 2)
  3. h(x) = sin(2x)

Lời giải:

  • f'(x) = 6x + 2
  • g'(x) = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
  • h'(x) = cos(2x) * 2 = 2cos(2x)

Câu 2: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm cấp hai của hàm số.

Lời giải:

y' = 3x2 - 6x

y'' = 6x - 6

Câu 3: Tìm phương trình tiếp tuyến của đồ thị hàm số y = x2 tại điểm có hoành độ x = 1.

Lời giải:

y(1) = 12 = 1. Vậy điểm tiếp xúc là (1, 1).

y' = 2x. Tại x = 1, y'(1) = 2.

Phương trình tiếp tuyến là: y - 1 = 2(x - 1) => y = 2x - 1

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.
  • Phân tích kỹ đề bài để xác định đúng công thức và phương pháp giải phù hợp.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín.
  • Các video bài giảng về đạo hàm trên YouTube.
  • Các diễn đàn trao đổi kiến thức toán học.

Kết luận

Bài 8 trang 76 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm.

Tài liệu, đề thi và đáp án Toán 12