Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 8 trang 76 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Cho ba điểm (Aleft( {0;2; - 1} right),Bleft( { - 5;4;2} right),Cleft( { - 1;0;5} right)). Tìm toạ độ trọng tâm (G) của tam giác (ABC).
Đề bài
Cho ba điểm \(A\left( {0;2; - 1} \right),B\left( { - 5;4;2} \right),C\left( { - 1;0;5} \right)\). Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
Lời giải chi tiết
\(G\left( {\frac{{0 + \left( { - 5} \right) + \left( { - 1} \right)}}{3};\frac{{2 + 4 + 0}}{3};\frac{{\left( { - 1} \right) + 2 + 5}}{3}} \right) \Leftrightarrow G\left( { - 2;2;2} \right)\).
Bài 8 trang 76 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu và ứng dụng của đạo hàm trong các lĩnh vực khác.
Bài 8 bao gồm các dạng bài tập sau:
Lời giải:
Lời giải:
y' = 3x2 - 6x
y'' = 6x - 6
Lời giải:
y(1) = 12 = 1. Vậy điểm tiếp xúc là (1, 1).
y' = 2x. Tại x = 1, y'(1) = 2.
Phương trình tiếp tuyến là: y - 1 = 2(x - 1) => y = 2x - 1
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 8 trang 76 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm.