Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc \(v\left( t \right) = 20 - 10t\left( {m/s} \right)\) với \(0 \le t \le 4\). a) Xác định độ cao của vật (tính theo mét) tại thời điểm \(t = 3\). b) Tính quãng đường vật đi được trong 3 giây đầu.
Đề bài
Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc \(v\left( t \right) = 20 - 10t\left( {m/s} \right)\) với \(0 \le t \le 4\).
a) Xác định độ cao của vật (tính theo mét) tại thời điểm \(t = 3\).
b) Tính quãng đường vật đi được trong 3 giây đầu.
Phương pháp giải - Xem chi tiết
‒ Độ cao của vật \(h\left( t \right) = \int {v\left( t \right)dt} \).
‒ Quãng đường vật đi được từ giây thứ \({t_1}\) đến giây thứ \({t_2}\): \(s = \int\limits_{{t_1}}^{{t_2}} {\left| {v\left( t \right)} \right|dt} \).
Lời giải chi tiết
a) Gọi \(h\left( t \right)\) là độ cao của vật (tính theo mét) tại thời điểm \(t\) với \(0 \le t \le 4\).
Ta có: \(h\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {20 - 10t} \right)dt} = 20t - 5{t^2} + C\).
Thời điểm ban đầu có \(h\left( 0 \right) = 0\) nên ta có \(20.0 - {5.0^2} + C = 0 \Leftrightarrow C = 0\).
Vậy \(h\left( t \right) = 20t - 5{t^2}\).
b) Quãng đường vật đi được trong 3 giây đầu là:
\(\begin{array}{l}s = \int\limits_0^3 {\left| {v\left( t \right)} \right|dt} = \int\limits_0^3 {\left| {20 - 10t} \right|dt} = \int\limits_0^2 {\left| {20 - 10t} \right|dt} + \int\limits_2^3 {\left| {20 - 10t} \right|dt} = \int\limits_0^2 {\left( {20 - 10t} \right)dt} - \int\limits_2^3 {\left( {20 - 10t} \right)dt} \\ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^2 - \left. {\left( {20t - 5{t^2}} \right)} \right|_2^3 = 20 + 5 = 25\left( m \right)\end{array}\)
Bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm số hợp, và đạo hàm của hàm số lượng giác để giải quyết các bài toán cụ thể.
Bài 13 bao gồm một số câu hỏi và bài tập khác nhau, thường được chia thành các phần nhỏ để học sinh dễ dàng tiếp cận. Các dạng bài tập thường gặp bao gồm:
Để giải quyết bài 13 trang 16 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi và bài tập trong bài 13:
Giải:
f'(x) = 3x^2 + 4x - 5
Giải:
g'(x) = cos(x) - sin(x)
g''(x) = -sin(x) - cos(x)
Giải:
h'(x) = 2x - 4
Giải phương trình h'(x) = 0, ta được x = 2
h''(x) = 2 > 0, vậy hàm số đạt cực tiểu tại x = 2
Giá trị cực tiểu là h(2) = 2^2 - 4*2 + 3 = -1
Khi giải bài tập về đạo hàm, học sinh cần chú ý các điểm sau:
Để học tập và ôn luyện kiến thức về đạo hàm, học sinh có thể tham khảo các tài liệu sau:
Bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ giải quyết bài tập một cách dễ dàng và hiệu quả.