Logo Header
  1. Môn Toán
  2. Giải bài 13 trang 16 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 13 trang 16 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc \(v\left( t \right) = 20 - 10t\left( {m/s} \right)\) với \(0 \le t \le 4\). a) Xác định độ cao của vật (tính theo mét) tại thời điểm \(t = 3\). b) Tính quãng đường vật đi được trong 3 giây đầu.

Đề bài

Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc \(v\left( t \right) = 20 - 10t\left( {m/s} \right)\) với \(0 \le t \le 4\).

a) Xác định độ cao của vật (tính theo mét) tại thời điểm \(t = 3\).

b) Tính quãng đường vật đi được trong 3 giây đầu.

Phương pháp giải - Xem chi tiếtGiải bài 13 trang 16 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Độ cao của vật \(h\left( t \right) = \int {v\left( t \right)dt} \).

‒ Quãng đường vật đi được từ giây thứ \({t_1}\) đến giây thứ \({t_2}\): \(s = \int\limits_{{t_1}}^{{t_2}} {\left| {v\left( t \right)} \right|dt} \).

Lời giải chi tiết

a) Gọi \(h\left( t \right)\) là độ cao của vật (tính theo mét) tại thời điểm \(t\) với \(0 \le t \le 4\).

Ta có: \(h\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {20 - 10t} \right)dt} = 20t - 5{t^2} + C\).

Thời điểm ban đầu có \(h\left( 0 \right) = 0\) nên ta có \(20.0 - {5.0^2} + C = 0 \Leftrightarrow C = 0\).

Vậy \(h\left( t \right) = 20t - 5{t^2}\).

b) Quãng đường vật đi được trong 3 giây đầu là:

\(\begin{array}{l}s = \int\limits_0^3 {\left| {v\left( t \right)} \right|dt} = \int\limits_0^3 {\left| {20 - 10t} \right|dt} = \int\limits_0^2 {\left| {20 - 10t} \right|dt} + \int\limits_2^3 {\left| {20 - 10t} \right|dt} = \int\limits_0^2 {\left( {20 - 10t} \right)dt} - \int\limits_2^3 {\left( {20 - 10t} \right)dt} \\ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^2 - \left. {\left( {20t - 5{t^2}} \right)} \right|_2^3 = 20 + 5 = 25\left( m \right)\end{array}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 13 trang 16 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm số hợp, và đạo hàm của hàm số lượng giác để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 13 trang 16

Bài 13 bao gồm một số câu hỏi và bài tập khác nhau, thường được chia thành các phần nhỏ để học sinh dễ dàng tiếp cận. Các dạng bài tập thường gặp bao gồm:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn giản và phức tạp, sử dụng các quy tắc đạo hàm đã học.
  • Tìm đạo hàm cấp hai: Yêu cầu tính đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, hoặc giải các bài toán liên quan đến tốc độ thay đổi.

Hướng dẫn giải chi tiết

Để giải quyết bài 13 trang 16 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Các công thức đạo hàm cơ bản: Đạo hàm của hàm số lũy thừa, hàm số mũ, hàm số logarit, hàm số lượng giác.
  2. Quy tắc tính đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc đạo hàm của hàm số hợp.
  3. Ứng dụng đạo hàm: Tìm cực trị, khảo sát hàm số, giải các bài toán liên quan đến tốc độ thay đổi.

Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi và bài tập trong bài 13:

Câu 1: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1

Giải:

f'(x) = 3x^2 + 4x - 5

Câu 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x) + cos(x)

Giải:

g'(x) = cos(x) - sin(x)

g''(x) = -sin(x) - cos(x)

Câu 3: Tìm cực trị của hàm số h(x) = x^2 - 4x + 3

Giải:

h'(x) = 2x - 4

Giải phương trình h'(x) = 0, ta được x = 2

h''(x) = 2 > 0, vậy hàm số đạt cực tiểu tại x = 2

Giá trị cực tiểu là h(2) = 2^2 - 4*2 + 3 = -1

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, học sinh cần chú ý các điểm sau:

  • Kiểm tra kỹ các công thức đạo hàm: Đảm bảo sử dụng đúng công thức đạo hàm cho từng loại hàm số.
  • Áp dụng đúng quy tắc đạo hàm: Sử dụng đúng quy tắc đạo hàm khi tính đạo hàm của hàm số phức tạp.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín

Kết luận

Bài 13 trang 16 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ giải quyết bài tập một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12