Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách bài tập Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 1 trang 77, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hai điểm \(A\left( {1;1; - 2} \right)\) và \(B\left( {2;2;1} \right)\). Toạ độ của vectơ \(\overrightarrow {AB} \) là A. \(\left( {3;3; - 1} \right)\). B. \(\left( { - 1; - 1; - 3} \right)\). C. \(\left( {3;1;1} \right)\). D. \(\left( {1;1;3} \right)\).
Đề bài
Cho hai điểm \(A\left( {1;1; - 2} \right)\) và \(B\left( {2;2;1} \right)\). Toạ độ của vectơ \(\overrightarrow {AB} \) là
A. \(\left( {3;3; - 1} \right)\).
B. \(\left( { - 1; - 1; - 3} \right)\).
C. \(\left( {3;1;1} \right)\).
D. \(\left( {1;1;3} \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).
Lời giải chi tiết
\(\overrightarrow {AB} = \left( {2 - 1;2 - 1;1 - \left( { - 2} \right)} \right) = \left( {1;1;3} \right)\).
Chọn D.
Bài 1 trang 77 sách bài tập Toán 12 Chân trời sáng tạo thường tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.
Trước khi bắt đầu giải bài, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn tránh được những sai sót không đáng có và tập trung vào việc tìm ra lời giải chính xác.
Sau khi đã hiểu rõ yêu cầu của bài toán, hãy áp dụng các kiến thức về đạo hàm để giải quyết bài toán. Ví dụ, nếu bài toán yêu cầu tìm cực trị của hàm số, bạn cần tính đạo hàm bậc nhất và giải phương trình đạo hàm bằng 0 để tìm ra các điểm cực trị. Sau đó, bạn cần kiểm tra dấu của đạo hàm bậc hai để xác định loại cực trị (cực đại hoặc cực tiểu).
Sau khi đã tìm ra lời giải, hãy kiểm tra lại kết quả để đảm bảo tính chính xác. Bạn có thể thay thế các giá trị đã tìm được vào phương trình ban đầu để kiểm tra xem chúng có thỏa mãn điều kiện của bài toán hay không.
Giả sử bài 1 yêu cầu tìm đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x. Để giải bài toán này, chúng ta áp dụng quy tắc tính đạo hàm của tổng và hiệu, cũng như quy tắc tính đạo hàm của lũy thừa:
Vậy, đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x là f'(x) = 3x^2 - 6x + 2.
Để học tốt môn Toán 12, bạn cần:
Bài 1 trang 77 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.