Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 18 trang 79 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này nhé!
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hai vectơ (overrightarrow a = left( {2;1;5} right)) và (overrightarrow b = left( {5;0; - 2} right)) a) (left| {overrightarrow a } right| = sqrt {30} ). b) (overrightarrow a ,overrightarrow b )cùng phương. c) (overrightarrow a + overrightarrow b = left( {7;1;3} right)). d) (overrightarrow a .overrightarrow b = 1).
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.Cho hai vectơ \(\overrightarrow a = \left( {2;1;5} \right)\) và \(\overrightarrow b = \left( {5;0; - 2} \right)\)a) \(\left| {\overrightarrow a } \right| = \sqrt {30} \). b) \(\overrightarrow a ,\overrightarrow b \)cùng phương. c) \(\overrightarrow a + \overrightarrow b = \left( {7;1;3} \right)\). d) \(\overrightarrow a .\overrightarrow b = 1\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính độ dài của vectơ \(\overrightarrow a = \left( {x;y;z} \right)\): \(\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \).
‒ Sử dụng tính chất hai vectơ cùng phương: Với \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\) và \(\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right),\overrightarrow b \ne \overrightarrow 0 \), Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương khi và chỉ khi tồn tại số \(k\) sao cho \(\left\{ \begin{array}{l}{a_1} = k{b_1}\\{a_2} = k{b_2}\\{a_3} = k{b_3}\end{array} \right.\).
‒ Sử dụng biểu thức toạ độ của phép cộng vectơ:
Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\) thì \(\overrightarrow u + \overrightarrow v = \left( {{x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2}} \right)\).
‒ Sử dụng công thức tính tích vô hướng của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}\).
Lời giải chi tiết
\(\left| {\overrightarrow a } \right| = \sqrt {{2^2} + {1^2} + {5^2}} = \sqrt {30} \). Vậy a) đúng.
Vì \(\frac{5}{2} \ne \frac{0}{1} \ne \frac{{ - 2}}{5}\) nên \(\overrightarrow a ,\overrightarrow b \) không cùng phương. Vậy b) sai.
\(\overrightarrow a + \overrightarrow b = \left( {2 + 5;1 + 0;5 + \left( { - 2} \right)} \right) = \left( {7;1;3} \right)\). Vậy c) đúng.
\(\overrightarrow a .\overrightarrow b = 2.5 + 1.0 + 5.\left( { - 2} \right) = 0\). Vậy d) sai.
a) Đ.
b) S.
c) Đ.
d) S.
Bài 18 trang 79 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn và ứng dụng của đạo hàm trong các lĩnh vực khác.
Bài 18 trang 79 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 18 trang 79 Sách bài tập Toán 12 - Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ: Tính đạo hàm của hàm số y = sin(x2 + 1).
Giải:
Đặt u = x2 + 1. Khi đó, y = sin(u).
Ta có: du/dx = 2x và dy/du = cos(u).
Áp dụng quy tắc đạo hàm hàm hợp, ta có:
dy/dx = (dy/du) * (du/dx) = cos(u) * 2x = 2x * cos(x2 + 1).
Khi giải bài tập về đạo hàm, bạn cần chú ý đến các điểm sau:
Để củng cố kiến thức về đạo hàm, bạn có thể tham khảo các bài tập tương tự sau:
Bài 18 trang 79 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các quy tắc tính đạo hàm và áp dụng phương pháp giải đúng, bạn có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Giaitoan.edu.vn hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích và giúp bạn học Toán 12 tốt hơn.
Hàm số | Đạo hàm |
---|---|
y = c (hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sin(x) | y' = cos(x) |
y = cos(x) | y' = -sin(x) |
y = ex | y' = ex |
y = ln(x) | y' = 1/x |