Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 22 sách bài tập Toán 12 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Hằng tháng, một công ty chuyên sản xuất mặt hàng A phải trả chi phí cố định là 50 triệu đồng (để thuê mặt bằng và lương nhân viên) và chi phí cho nguyên liệu là (10000x) (đồng) với (x) là số lượng sản phẩm A được nhập về. a) Viết công thức tính chi phí trung bình (overline C left( x right)) mà công ty cần chi để sản xuất một sản phẩm. b) Tìm các tiệm cận của đồ thị hàm số (overline C left( x right)).

Đề bài

Hằng tháng, một công ty chuyên sản xuất mặt hàng A phải trả chi phí cố định là 50 triệu đồng (để thuê mặt bằng và lương nhân viên) và chi phí cho nguyên liệu là \(10000x\) (đồng) với \(x\) là số lượng sản phẩm A được nhập về.

a) Viết công thức tính chi phí trung bình \(\overline C \left( x \right)\) mà công ty cần chi để sản xuất một sản phẩm.

b) Tìm các tiệm cận của đồ thị hàm số \(\overline C \left( x \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 22 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

a) Chi phí trung bình \(\overline C \left( x \right) = \frac{{50000000 + 10000x}}{x}\) (đồng).

b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 3;1} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {0^ - }} \overline C \left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{50000000 + 10000x}}{x} = - \infty ;\mathop {\lim }\limits_{x \to {0^ + }} \overline C \left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{50000000 + 10000x}}{x} = + \infty \)

Vậy \(x = 0\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{50000000 + 10000x}}{x} = 10000;\mathop {\lim }\limits_{x \to - \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{50000000 + 10000x}}{x} = 10000\)

Vậy \(y = 10000\) là tiệm cận ngang của đồ thị hàm số đã cho.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 22 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 6 trang 22 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Hướng dẫn giải chi tiết

Để giải bài 6 trang 22 sách bài tập Toán 12 Chân trời sáng tạo, bạn cần thực hiện theo các bước sau:

  1. Xác định dạng bài tập: Xác định xem bài tập thuộc dạng nào trong các dạng đã nêu ở trên.
  2. Áp dụng kiến thức và công thức: Lựa chọn các kiến thức và công thức phù hợp để giải bài tập.
  3. Thực hiện các phép tính: Thực hiện các phép tính một cách cẩn thận và chính xác.
  4. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải nhanh

Để giải bài tập đạo hàm nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các công thức đạo hàm cơ bản: Việc nắm vững các công thức đạo hàm cơ bản sẽ giúp bạn tiết kiệm thời gian và công sức.
  • Sử dụng bảng đạo hàm: Bảng đạo hàm là một công cụ hữu ích để tra cứu các công thức đạo hàm.
  • Luyện tập thường xuyên: Luyện tập thường xuyên sẽ giúp bạn rèn luyện kỹ năng giải toán và làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm

Kết luận

Bài 6 trang 22 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải nhanh mà chúng tôi đã cung cấp, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Công thứcMô tả
(xn)' = nxn-1Đạo hàm của lũy thừa
(u + v)' = u' + v'Đạo hàm của tổng
(u - v)' = u' - v'Đạo hàm của hiệu

Tài liệu, đề thi và đáp án Toán 12