Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 14 trang 63 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng theo dõi và tham khảo để đạt kết quả tốt nhất trong môn Toán nhé!
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho điểm (Mleft( {2;0;0} right)) và mặt phẳng (left( P right):2x - y - 2z + 11 = 0). a) Điểm (Aleft( {0;5;3} right)) thuộc mặt phẳng (left( P right)). b) (dleft( {M,left( P right)} right) = frac{5}{9}). c) Đường thẳng (MA) vuông góc với (left( P right)). d) Đường thẳng (d:frac{{x - 7}}{1} = frac{{y - 9}}{{ - 2}} = frac{{z - 31}}{2}) song song với (left( P right)).
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho điểm \(M\left( {2;0;0} \right)\) và mặt phẳng \(\left( P \right):2x - y - 2z + 11 = 0\).
a) Điểm \(A\left( {0;5;3} \right)\) thuộc mặt phẳng \(\left( P \right)\).
b) \(d\left( {M,\left( P \right)} \right) = \frac{5}{9}\).
c) Đường thẳng \(MA\) vuông góc với \(\left( P \right)\).
d) Đường thẳng \(d:\frac{{x - 7}}{1} = \frac{{y - 9}}{{ - 2}} = \frac{{z - 31}}{2}\) song song với \(\left( P \right)\).
Phương pháp giải - Xem chi tiết
‒ Điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) nếu \(A{x_0} + B{y_0} + C{z_0} + D = 0\).
‒ Khoảng cách từ điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\):
\(d\left( {{M_0};\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{{\rm{z}}_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
‒ Mặt phẳng \(\left( P \right)\) vuông góc với đường thẳng \(d\) nếu hai vectơ \(\overrightarrow {{n_P}} \) và \(\overrightarrow {{u_d}} \) cùng phương.
‒ Mặt phẳng \(\left( P \right)\) song song với đường thẳng \(d\) nếu hai vectơ \(\overrightarrow {{n_P}} \) và \(\overrightarrow {{u_d}} \) vuông góc.
Lời giải chi tiết
Ta có: \(2.0 - 5 - 2.3 + 11 = 0\). Do đó điểm \(A\left( {0;5;3} \right)\) thuộc mặt phẳng \(\left( P \right)\). Vậy a) đúng.
Ta có: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {2.2 - 0 - 2.0 + 11 = 0} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 5\). Vậy b) sai.
Đường thẳng \(MA\) có vectơ chỉ phương \(\overrightarrow {MA} = \left( { - 2;5;3} \right)\).
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {2; - 1; - 2} \right)\).
Vì \(\frac{{ - 2}}{2} \ne \frac{5}{{ - 1}} \ne \frac{3}{{ - 2}}\) nên đường thẳng \(MA\) không vuông góc với \(\left( P \right)\). Vậy c) sai.
Đường thẳng \(d:\frac{{x - 7}}{1} = \frac{{y - 9}}{{ - 2}} = \frac{{z - 31}}{2}\) có vectơ chỉ phương \(\overrightarrow u = \left( {1; - 2;2} \right)\).
Ta có: \(\overrightarrow n .\overrightarrow u = 2.1 + \left( { - 1} \right).\left( { - 2} \right) + \left( { - 2} \right).2 = 0\) nên \(\overrightarrow n \bot \overrightarrow u \). Do đó đường thẳng \(d\) song song với \(\left( P \right)\). Vậy d) đúng.
a) Đ.
b) S.
c) S.
d) Đ.
Bài 14 trang 63 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn và ứng dụng của đạo hàm trong các lĩnh vực khác.
Bài 14 thường bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính đạo hàm của các hàm số cho trước. Các hàm số này có thể có dạng đơn giản hoặc phức tạp, đòi hỏi học sinh phải áp dụng linh hoạt các quy tắc đạo hàm đã học. Để giải bài tập này hiệu quả, học sinh cần:
Ví dụ: Tính đạo hàm của hàm số y = sin(x^2 + 1)
Giải:
Ngoài việc tính đạo hàm trực tiếp, bài 14 trang 63 còn có thể xuất hiện các dạng bài tập sau:
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 14 trang 63 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các bạn học sinh sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm.