Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 8 trang 34 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 8 trang 34 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập một cách hiệu quả.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho hàm số \(y = {x^3} - 12{\rm{x}} + 6\). Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 3;3} \right]\) là A. 6. B. 15. C. 17. D. 22.

Đề bài

Cho hàm số \(y = {x^3} - 12{\rm{x}} + 6\). Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 3;3} \right]\) là

A. 6.

B. 15.

C. 17.

D. 22.

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 34 sách bài tập toán 12 - Chân trời sáng tạo 1

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);f\left( b \right)\).

Bước 3. Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\).

Lời giải chi tiết

Xét hàm số \(y = f\left( x \right) = {x^3} - 12{\rm{x}} + 6\) trên đoạn \(\left[ { - 3;3} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 12\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 2\).

\(f\left( { - 3} \right) = 15;f\left( { - 2} \right) = 22;f\left( 2 \right) = - 10;f\left( 3 \right) = - 3\)

Vậy \(\mathop {\max }\limits_{\left[ { - 3;3} \right]} f\left( x \right) = f\left( { - 2} \right) = 22\).

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 34 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 34 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 8 trang 34 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn, và các ứng dụng khác của đạo hàm trong toán học.

Nội dung chi tiết bài 8 trang 34

Bài 8 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước. Học sinh cần áp dụng các quy tắc đạo hàm đã học để tìm ra đạo hàm của hàm số.
  2. Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số. Điều này đòi hỏi học sinh phải tính đạo hàm cấp một trước, sau đó tính đạo hàm của đạo hàm cấp một.
  3. Vận dụng đạo hàm để giải quyết các bài toán thực tế: Một số bài tập yêu cầu vận dụng đạo hàm để giải quyết các bài toán liên quan đến vận tốc, gia tốc, hoặc các bài toán tối ưu hóa.

Phương pháp giải bài 8 trang 34

Để giải bài 8 trang 34 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, học sinh cần:

  • Nắm vững các quy tắc đạo hàm: Hiểu rõ và nhớ các quy tắc đạo hàm của các hàm số cơ bản và các phép toán trên hàm số.
  • Thực hành tính đạo hàm thường xuyên: Luyện tập tính đạo hàm của nhiều hàm số khác nhau để nâng cao kỹ năng và sự thành thạo.
  • Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu và các thông tin đã cho.
  • Áp dụng quy tắc đạo hàm phù hợp: Chọn quy tắc đạo hàm phù hợp với từng hàm số và phép toán trong bài toán.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

f'(x) = d/dx (3x2 + 2x - 1) = 6x + 2

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).

Giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Lưu ý quan trọng

Khi tính đạo hàm, cần chú ý đến các quy tắc đạo hàm của các hàm số đặc biệt như hàm lượng giác, hàm mũ, hàm logarit. Ngoài ra, cần cẩn thận với các phép toán trên hàm số như cộng, trừ, nhân, chia, và hợp hàm. Việc hiểu rõ các khái niệm và quy tắc đạo hàm là yếu tố then chốt để giải quyết các bài toán liên quan đến đạo hàm một cách chính xác và hiệu quả.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 8 trang 34 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các quy tắc đạo hàm, thực hành tính đạo hàm thường xuyên, và áp dụng các phương pháp giải bài tập hiệu quả, học sinh có thể tự tin giải quyết các bài toán liên quan đến đạo hàm và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12