Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 54 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 54 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Lập phương trình tham số của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Aleft( {1; - 5;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {2;0;7} right)); b) (d) đi qua hai điểm (Mleft( {3; - 1; - 1} right),Nleft( {5;1;2} right)).

Đề bài

Lập phương trình tham số của đường thẳng \(d\) trong mỗi trường hợp sau:

a) \(d\) đi qua điểm \(A\left( {1; - 5;0} \right)\) và có vectơ chỉ phương \(\overrightarrow a = \left( {2;0;7} \right)\);

b) \(d\) đi qua hai điểm \(M\left( {3; - 1; - 1} \right),N\left( {5;1;2} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Lời giải chi tiết

a) Đường thẳng đi qua điểm \(A\left( {1; - 5;0} \right)\) và có vectơ chỉ phương \(\overrightarrow a = \left( {2;0;7} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 5\\z = 7t\end{array} \right.\).

b) Ta có \(\overrightarrow {MN} = \left( {2;2;3} \right)\) là một vectơ chỉ phương của đường thẳng \(\Delta \).

Đường thẳng đi qua điểm \(M\left( {3; - 1; - 1} \right)\) và nhận \(\overrightarrow {MN} = \left( {2;2;3} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 1 + 2t\\z = - 1 + 3t\end{array} \right.\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2 trang 54 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 2 trang 54 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 2 trang 54 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập

Để giải bài 2 trang 54 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:

  1. Xác định đúng công thức đạo hàm cần sử dụng.
  2. Thực hiện tính đạo hàm một cách chính xác.
  3. Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Lời giải chi tiết bài 2 trang 54

Dưới đây là lời giải chi tiết bài 2 trang 54 sách bài tập Toán 12 Chân trời sáng tạo:

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1

Giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x)

Giải:

g'(x) = cos(x) - sin(x)

Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Thực hành tính đạo hàm thường xuyên để nâng cao kỹ năng.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính tốc độ thay đổi của một đại lượng.
  • Tìm cực trị của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Nghiên cứu sự biến thiên của hàm số.

Tài liệu tham khảo

Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín.
  • Các video bài giảng Toán 12 trên YouTube.

Kết luận

Bài 2 trang 54 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12