Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 107 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 107 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 3 trang 107 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Chọn đáp án đúng Trong buổi tham quan vườn quốc gia Cát Tiên, nhóm học sinh lớp 12A3 đã ước lượng chiều dài thân của một số cá thể chuồn chuồn và ghi lại trong bảng số liệu sau: a) Khoảng biến thiên (đơn vị: cm) của mẫu số liệu ghép nhóm trên là: A. 6,5. B. 5. C. 4. D. 7,5. b) Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là: A. \(\left[ {3,5;4,5} \right)\). B. \(\left[ {4,5;5,5} \right)\). C. \(\left[ {5,5;6,5} \right)\). D. \(\left[ {6,5;7,5} \right)\). c) Khoảng tứ ph

Đề bài

Chọn đáp án đúng

Trong buổi tham quan vườn quốc gia Cát Tiên, nhóm học sinh lớp 12A3 đã ước lượng chiều dài thân của một số cá thể chuồn chuồn và ghi lại trong bảng số liệu sau:

Giải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Khoảng biến thiên (đơn vị: cm) của mẫu số liệu ghép nhóm trên là:

A. 6,5.

B. 5.

C. 4.

D. 7,5.

b) Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là:

A. \(\left[ {3,5;4,5} \right)\).

B. \(\left[ {4,5;5,5} \right)\).

C. \(\left[ {5,5;6,5} \right)\).

D. \(\left[ {6,5;7,5} \right)\).

c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào sau đây?

A. 1,83.

B. 17,41.

C. 15,80.

D. 6,44.

d) Độ lệch chuẩn của mẫu số liệu ghép nhóm trên gần nhất với với giá trị nào sau đây?

A. 1,29.

B. 5,13.

C. 2,27.

D. 1,14.

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)

trong đó:

• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;

• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);

• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);

• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)

‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).

Lời giải chi tiết

a) Khoảng biến thiên của mẫu số liệu trên là: \(R = 7,5 - 2,5 = 5\) (cm).

Chọn B.

b) Cỡ mẫu: \(n = 8 + 25 + 28 + 31 + 12 = 104\)

Gọi \({x_1};{x_2};...;{x_{104}}\) là mẫu số liệu gốc gồm số cổ động viên đến sân cổ vũ mỗi trận đấu theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{27}} \in \left[ {3,5;4,5} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 3,5 + \frac{{\frac{{1.104}}{4} - 8}}{{25}}\left( {4,5 - 3,5} \right) = \frac{{211}}{{50}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{79}} \in \left[ {5,5;6,5} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 5,5 + \frac{{\frac{{3.104}}{4} - \left( {8 + 25 + 28} \right)}}{{31}}\left( {6,5 - 5,5} \right) = \frac{{375}}{{62}}\)

Chọn C.

c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

\(\Delta Q = {Q_3} - {Q_1} = \frac{{375}}{{62}} - \frac{{211}}{{50}} = \frac{{1417}}{{775}} \approx 1,83\) (cm).

Chọn A.

d) Ta có bảng sau:

Giải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo 3

Cỡ mẫu \(n = 104\)

Số trung bình của mẫu số liệu ghép nhóm là:

\(\overline x = \frac{{8.3 + 25.4 + 28.5 + 31.6 + 12.7}}{{104}} = \frac{{267}}{{52}}\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\({S^2} = \frac{1}{{104}}\left( {{{8.3}^2} + {{25.4}^2} + {{28.5}^2} + {{31.6}^2} + {{12.7}^2}} \right) - {\left( {\frac{{267}}{{52}}} \right)^2} = \frac{{3487}}{{2704}}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm đó là: \(S = \sqrt {\frac{{3487}}{{2704}}} \approx 1,29\).

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 107 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 107 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ để giải quyết các bài toán trong sách giáo khoa mà còn là nền tảng cho việc học các môn khoa học khác.

Nội dung chi tiết bài 3 trang 107

Bài 3 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số đơn giản. Ví dụ: Tính đạo hàm của hàm số y = x3 + 2x2 - 5x + 1.
  • Dạng 2: Tính đạo hàm của hàm hợp. Ví dụ: Tính đạo hàm của hàm số y = sin(x2 + 1).
  • Dạng 3: Tính đạo hàm bằng quy tắc tích, thương, và hàm hợp. Ví dụ: Tính đạo hàm của hàm số y = (x2 + 1) / (x - 2).
  • Dạng 4: Tìm đạo hàm cấp hai. Ví dụ: Tìm đạo hàm cấp hai của hàm số y = x4.

Phương pháp giải bài tập đạo hàm

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn cần:

  1. Nắm vững các công thức đạo hàm cơ bản.
  2. Hiểu rõ các quy tắc tính đạo hàm (quy tắc tích, thương, hàm hợp).
  3. Phân tích cấu trúc của hàm số để lựa chọn phương pháp giải phù hợp.
  4. Thực hành giải nhiều bài tập để rèn luyện kỹ năng.

Ví dụ minh họa giải bài 3 trang 107

Ví dụ 1: Tính đạo hàm của hàm số y = 3x2 - 4x + 5.

Giải:

y' = 6x - 4

Ví dụ 2: Tính đạo hàm của hàm số y = sin(2x).

Giải:

y' = cos(2x) * 2 = 2cos(2x)

Lưu ý khi giải bài tập đạo hàm

Khi giải bài tập đạo hàm, bạn cần chú ý:

  • Sử dụng đúng công thức đạo hàm.
  • Áp dụng đúng quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Đơn giản hóa biểu thức đạo hàm nếu có thể.

Tầm quan trọng của việc học đạo hàm

Đạo hàm là một khái niệm quan trọng trong toán học, có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Việc hiểu rõ về đạo hàm giúp bạn:

  • Phân tích sự thay đổi của các hàm số.
  • Tìm cực trị của hàm số.
  • Giải quyết các bài toán tối ưu hóa.
  • Nắm vững các khái niệm toán học nâng cao.

Tổng kết

Bài 3 trang 107 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải các bài tập về đạo hàm và đạt kết quả tốt trong các kỳ thi.

Bảng tổng hợp công thức đạo hàm cơ bản

Hàm số yĐạo hàm y'
y = c (hằng số)y' = 0
y = xny' = nxn-1
y = sin(x)y' = cos(x)
y = cos(x)y' = -sin(x)
y = exy' = ex
y = ln(x)y' = 1/x

Tài liệu, đề thi và đáp án Toán 12