Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 60 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 5 trang 60 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Người ta muốn thiết kế một quả địa cầu trong không gian \(Oxyz\) bằng phần mềm 3D. Biết phương trình mặt cầu là \(\left( S \right):{\left( {x - 24} \right)^2} + {\left( {y - 24} \right)^2} + {\left( {z - 24} \right)^2} = 100\) (đơn vị cm) và phương trình đường thẳng trục xoay là \({\rm{d}}:\frac{{x - 24}}{1} = \frac{{y - 24}}{1} = \frac{{z - 24}}{{3,25}}\). a) Tìm toạ độ giao điểm của \(d\) và \(\left( S \right)\). b) Tính số đo góc giữa \(d\) và trục \(Oz\). Làm tròn kết quả đến hàng

Đề bài

Người ta muốn thiết kế một quả địa cầu trong không gian \(Oxyz\) bằng phần mềm 3D.

Biết phương trình mặt cầu là

\(\left( S \right):{\left( {x - 24} \right)^2} + {\left( {y - 24} \right)^2} + {\left( {z - 24} \right)^2} = 100\) (đơn vị cm)

và phương trình đường thẳng trục xoay là

\({\rm{d}}:\frac{{x - 24}}{1} = \frac{{y - 24}}{1} = \frac{{z - 24}}{{3,25}}\).

a) Tìm toạ độ giao điểm của \(d\) và \(\left( S \right)\).

b) Tính số đo góc giữa \(d\) và trục \(Oz\). Làm tròn kết quả đến hàng phần mười của độ.

Giải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Viết phương trình đường thẳng \(d\) theo tham số \(t\) rồi thay vào phương trình mặt cầu \(\left( S \right)\) để tìm \(t\), sau đó tìm toạ độ giao điểm.

‒ Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:

\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

a) Phương trình tham số của đường thẳng \(d\) là: \(d:\left\{ \begin{array}{l}x = 24 + t\\y = 24 + t\\z = 24 + 3,25t\end{array} \right.\)

Điểm \(M\) là giao điểm của đường thẳng \(d\) và mặt cầu \(\left( S \right)\) nên điểm \(M\) nằm trên đường thẳng \(d\). Vậy điểm \(M\) có toạ độ là: \(M\left( {24 + t;24 + t;24 + 3,25t} \right)\)

Điểm \(M\) nằm trên mặt cầu nên ta có:

\({\left( {24 + t - 24} \right)^2} + {\left( {24 + t - 24} \right)^2} + {\left( {24 + 3,25t - 24} \right)^2} = 100 \Leftrightarrow \frac{{201}}{{16}}{t^2} = 100 \Leftrightarrow {t^2} = \frac{{1600}}{{201}}\).

\( \Leftrightarrow t = \frac{{40}}{{\sqrt {201} }}\) hoặc \(t = - \frac{{40}}{{\sqrt {201} }}\).

Vậy toạ độ giao điểm của đường thẳng \(d\) và mặt cầu \(\left( S \right)\) là:

\(M\left( {24 + \frac{{40}}{{\sqrt {201} }};24 + \frac{{40}}{{\sqrt {201} }};24 + \frac{{130}}{{\sqrt {201} }}} \right)\) và \(N\left( {24 - \frac{{40}}{{\sqrt {201} }};24 - \frac{{40}}{{\sqrt {201} }};24 - \frac{{130}}{{\sqrt {201} }}} \right)\).

b) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {1;1;3,25} \right)\).

Trục \(Oz\) có vectơ chỉ phương \(\overrightarrow k = \left( {0;0;1} \right)\).

Ta có: \(\cos \left( {d,Oz} \right) = \frac{{\left| {1.0 + 1.0 + 3,25.1} \right|}}{{\sqrt {{1^2} + {1^2} + {{3,25}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} \approx 0,917\).

Vậy \(\alpha \approx {23,5^ \circ }\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo: Chi tiết và Dễ hiểu

Bài 5 trang 60 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Đạo hàm của hàm số: Đạo hàm của hàm số f(x) tại điểm x, ký hiệu là f'(x), biểu thị tốc độ thay đổi tức thời của hàm số tại điểm đó.
  • Quy tắc tính đạo hàm:
    • Đạo hàm của hàm số f(x) = c (hằng số) là f'(x) = 0.
    • Đạo hàm của hàm số f(x) = xn là f'(x) = nxn-1.
    • Đạo hàm của hàm số f(x) = u(x) + v(x) là f'(x) = u'(x) + v'(x).
    • Đạo hàm của hàm số f(x) = u(x) * v(x) là f'(x) = u'(x)v(x) + u(x)v'(x).
    • Đạo hàm của hàm số f(x) = u(x) / v(x) là f'(x) = (u'(x)v(x) - u(x)v'(x)) / (v(x))2.
  • Đạo hàm của các hàm số lượng giác:
    • (sin x)' = cos x
    • (cos x)' = -sin x
    • (tan x)' = 1/cos2 x
    • (cot x)' = -1/sin2 x

Phần 2: Giải chi tiết bài 5 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giải bài 5 trang 60, chúng ta cần xác định rõ yêu cầu của bài toán. Thông thường, bài toán sẽ yêu cầu tính đạo hàm của một hàm số cho trước hoặc tìm điều kiện để hàm số có đạo hàm. Dưới đây là một ví dụ minh họa:

Bài toán: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Lời giải:

  1. Áp dụng quy tắc đạo hàm của hàm đa thức, ta có:
  2. f'(x) = (3x2)' + (2x)' + (-1)'
  3. f'(x) = 6x + 2 + 0
  4. Vậy, f'(x) = 6x + 2.

Lưu ý: Khi tính đạo hàm, cần chú ý đến thứ tự thực hiện các phép toán và áp dụng đúng các quy tắc đạo hàm.

Phần 3: Các dạng bài tập thường gặp và phương pháp giải

Bài tập về đạo hàm thường xuất hiện trong các dạng sau:

  • Tính đạo hàm của hàm số: Đây là dạng bài tập cơ bản nhất, yêu cầu học sinh vận dụng các quy tắc đạo hàm để tính đạo hàm của hàm số cho trước.
  • Tìm đạo hàm cấp hai: Yêu cầu học sinh tính đạo hàm của đạo hàm cấp một.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, điểm uốn: Đây là dạng bài tập nâng cao, yêu cầu học sinh hiểu rõ về mối liên hệ giữa đạo hàm và tính chất của hàm số.

Để giải các bài tập này, cần:

  • Nắm vững lý thuyết về đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.

Phần 4: Bài tập luyện tập

Để củng cố kiến thức, bạn có thể thử giải các bài tập sau:

  1. Tính đạo hàm của hàm số f(x) = x3 - 4x + 5.
  2. Tính đạo hàm của hàm số f(x) = sin(2x) + cos(x).
  3. Tìm đạo hàm cấp hai của hàm số f(x) = x2 + 3x - 2.

Phần 5: Kết luận

Bài 5 trang 60 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng các kiến thức lý thuyết vào thực tế. Hy vọng rằng, với lời giải chi tiết và các hướng dẫn trong bài viết này, bạn sẽ tự tin hơn trong việc giải toán và đạt kết quả tốt trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 12