Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 60 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 5 trang 60 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Người ta muốn thiết kế một quả địa cầu trong không gian \(Oxyz\) bằng phần mềm 3D. Biết phương trình mặt cầu là \(\left( S \right):{\left( {x - 24} \right)^2} + {\left( {y - 24} \right)^2} + {\left( {z - 24} \right)^2} = 100\) (đơn vị cm) và phương trình đường thẳng trục xoay là \({\rm{d}}:\frac{{x - 24}}{1} = \frac{{y - 24}}{1} = \frac{{z - 24}}{{3,25}}\). a) Tìm toạ độ giao điểm của \(d\) và \(\left( S \right)\). b) Tính số đo góc giữa \(d\) và trục \(Oz\). Làm tròn kết quả đến hàng
Đề bài
Người ta muốn thiết kế một quả địa cầu trong không gian \(Oxyz\) bằng phần mềm 3D.
Biết phương trình mặt cầu là
\(\left( S \right):{\left( {x - 24} \right)^2} + {\left( {y - 24} \right)^2} + {\left( {z - 24} \right)^2} = 100\) (đơn vị cm)
và phương trình đường thẳng trục xoay là
\({\rm{d}}:\frac{{x - 24}}{1} = \frac{{y - 24}}{1} = \frac{{z - 24}}{{3,25}}\).
a) Tìm toạ độ giao điểm của \(d\) và \(\left( S \right)\).
b) Tính số đo góc giữa \(d\) và trục \(Oz\). Làm tròn kết quả đến hàng phần mười của độ.
Phương pháp giải - Xem chi tiết
‒ Viết phương trình đường thẳng \(d\) theo tham số \(t\) rồi thay vào phương trình mặt cầu \(\left( S \right)\) để tìm \(t\), sau đó tìm toạ độ giao điểm.
‒ Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:
\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
Lời giải chi tiết
a) Phương trình tham số của đường thẳng \(d\) là: \(d:\left\{ \begin{array}{l}x = 24 + t\\y = 24 + t\\z = 24 + 3,25t\end{array} \right.\)
Điểm \(M\) là giao điểm của đường thẳng \(d\) và mặt cầu \(\left( S \right)\) nên điểm \(M\) nằm trên đường thẳng \(d\). Vậy điểm \(M\) có toạ độ là: \(M\left( {24 + t;24 + t;24 + 3,25t} \right)\)
Điểm \(M\) nằm trên mặt cầu nên ta có:
\({\left( {24 + t - 24} \right)^2} + {\left( {24 + t - 24} \right)^2} + {\left( {24 + 3,25t - 24} \right)^2} = 100 \Leftrightarrow \frac{{201}}{{16}}{t^2} = 100 \Leftrightarrow {t^2} = \frac{{1600}}{{201}}\).
\( \Leftrightarrow t = \frac{{40}}{{\sqrt {201} }}\) hoặc \(t = - \frac{{40}}{{\sqrt {201} }}\).
Vậy toạ độ giao điểm của đường thẳng \(d\) và mặt cầu \(\left( S \right)\) là:
\(M\left( {24 + \frac{{40}}{{\sqrt {201} }};24 + \frac{{40}}{{\sqrt {201} }};24 + \frac{{130}}{{\sqrt {201} }}} \right)\) và \(N\left( {24 - \frac{{40}}{{\sqrt {201} }};24 - \frac{{40}}{{\sqrt {201} }};24 - \frac{{130}}{{\sqrt {201} }}} \right)\).
b) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {1;1;3,25} \right)\).
Trục \(Oz\) có vectơ chỉ phương \(\overrightarrow k = \left( {0;0;1} \right)\).
Ta có: \(\cos \left( {d,Oz} \right) = \frac{{\left| {1.0 + 1.0 + 3,25.1} \right|}}{{\sqrt {{1^2} + {1^2} + {{3,25}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} \approx 0,917\).
Vậy \(\alpha \approx {23,5^ \circ }\).
Bài 5 trang 60 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 5 trang 60, chúng ta cần xác định rõ yêu cầu của bài toán. Thông thường, bài toán sẽ yêu cầu tính đạo hàm của một hàm số cho trước hoặc tìm điều kiện để hàm số có đạo hàm. Dưới đây là một ví dụ minh họa:
Bài toán: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Lời giải:
Lưu ý: Khi tính đạo hàm, cần chú ý đến thứ tự thực hiện các phép toán và áp dụng đúng các quy tắc đạo hàm.
Bài tập về đạo hàm thường xuất hiện trong các dạng sau:
Để giải các bài tập này, cần:
Để củng cố kiến thức, bạn có thể thử giải các bài tập sau:
Bài 5 trang 60 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng các kiến thức lý thuyết vào thực tế. Hy vọng rằng, với lời giải chi tiết và các hướng dẫn trong bài viết này, bạn sẽ tự tin hơn trong việc giải toán và đạt kết quả tốt trong các kỳ thi.