Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 23 một cách đầy đủ và chính xác.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Chọn đáp án đúng. Hàm số \(y = f\left( x \right)\) có đồ thị đi qua điểm \(\left( {0;2} \right)\) và \(f'\left( x \right) = \cos x - \sin x\). Giá trị của \(f\left( \pi \right)\) là A. ‒1. B. 1. C. 4. D. 0.
Đề bài
Chọn đáp án đúng.
Hàm số \(y = f\left( x \right)\) có đồ thị đi qua điểm \(\left( {0;2} \right)\) và \(f'\left( x \right) = \cos x - \sin x\). Giá trị của \(f\left( \pi \right)\) là
A. ‒1.
B. 1.
C. 4.
D. 0.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức \(\int {f'\left( x \right)dx} = f\left( x \right) + C\).
‒ Sử dụng công thức:
• \(\int {\sin xdx} = - \cos x + C\).
• \(\int {\cos xdx} = \sin x + C\).
Lời giải chi tiết
\(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\left( {\cos x - \sin x} \right)dx} = \sin x + \cos x + C\)
Hàm số \(y = f\left( x \right)\) có đồ thị đi qua điểm \(\left( {0;2} \right) \Leftrightarrow f\left( 0 \right) = 2 \Leftrightarrow \sin 0 + \cos 0 + C = 2 \Leftrightarrow C = 1\)
Vậy \(f\left( x \right) = \sin x + \cos x + 1\).
\(f\left( \pi \right) = \sin \pi + \cos \pi + 1 = 0\).
Chọn D.
Bài 2 trang 23 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 23 một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
Áp dụng quy tắc tính đạo hàm của tổng và tích, ta có:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)'
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Để hỗ trợ bạn trong quá trình học tập và giải bài tập, chúng tôi xin giới thiệu một số tài liệu tham khảo hữu ích:
Bài 2 trang 23 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ giải quyết thành công bài tập này và đạt kết quả tốt trong môn Toán.