Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 4 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải, đáp án chính xác và giải thích rõ ràng từng bước để giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho hai biến cố \(A,B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8;P\left( {A \cup B} \right) = 0,9\). Tính \(P\left( {A|B} \right);P\left( {A|\overline B } \right);P\left( {\overline A |B} \right);P\left( {\overline A |\overline B } \right)\).
Đề bài
Cho hai biến cố \(A,B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8;P\left( {A \cup B} \right) = 0,9\).
Tính \(P\left( {A|B} \right);P\left( {A|\overline B } \right);P\left( {\overline A |B} \right);P\left( {\overline A |\overline B } \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng quy tắc cộng xác suất: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Theo quy tắc cộng xác suất ta có: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Suy ra \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = 0,4 + 0,8 - 0,9 = 0,3\).
Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}} = 0,375\).
Vì \(AB\) và \(A\overline B \) là hai biến cố xung khắc và \(AB \cup A\overline B = A\) nên theo tính chất của xác suất, ta có \(P\left( {A\overline B } \right) = P\left( A \right) - P\left( {AB} \right) = 0,4 - 0,3 = 0,1\).
Ta có: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - 0,8 = 0,2\).
Theo công thức tính xác suất có điều kiện ta có: \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,1}}{{0,2}} = 0,5\).
Do \(\overline A |B\) và \(A|B\) là hai biến cố đối nên ta có: \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - 0,375 = 0,625\).
Do \(\overline A |\overline B \) và \(A|\overline B \) là hai biến cố đối nên ta có: \(P\left( {\overline A |\overline B } \right) = 1 - P\left( {A|\overline B } \right) = 1 - 0,5 = 0,5\).
Bài tập 4 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các quy tắc tính đạo hàm, đạo hàm của hàm hợp, và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 4 thường bao gồm các dạng bài sau:
Để giải bài tập 4 trang 80 một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Giả sử bài tập 4 yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x. Ta thực hiện như sau:
f'(x) = 3x2 - 6x + 2
Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài tập 4 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên đây, bạn sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.