Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\); b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\); c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\); d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\); e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).
Đề bài
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\);
b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\);
c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\);
d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\);
e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).
Phương pháp giải - Xem chi tiết
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.
Bước 2. Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);f\left( b \right)\).
Bước 3. Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\).
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:
‒ Lập bảng biến thiên của hàm số trên tập hợp đó.
‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.
Lời giải chi tiết
a) Xét hàm số \(y = f\left( x \right) = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\).
Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 16{\rm{x}} - 12\)
\(f'\left( x \right) = 0 \Leftrightarrow x = 6\) hoặc \(x = - \frac{2}{3}\).
\(f\left( { - 2} \right) = - 15;f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}};f\left( 6 \right) = - 143;f\left( 9 \right) = - 26\)
Vậy \(\mathop {\max }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}},\mathop {\min }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( 6 \right) = - 143\).
b) Xét hàm số \(y = f\left( x \right) = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\).
Ta có: \(f'\left( x \right) = - 6{{\rm{x}}^2} + 18{\rm{x}}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 3\).
Bảng biến thiên của hàm số trên nửa khoảng \(\left( { - \infty ;4} \right]\):
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( { - \infty ;4} \right]} f\left( x \right) = f\left( 0 \right) = - 17\), hàm số không có giá trị lớn nhất trên nửa khoảng \(\left( { - \infty ;4} \right]\).
c) Xét hàm số \(y = f\left( x \right) = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\).
Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 12\)
\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 2\).
\(f\left( { - 6} \right) = - 140;f\left( { - 2} \right) = 20;f\left( 2 \right) = - 12;f\left( 3 \right) = - 5\)
Vậy \(\mathop {\max }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 2} \right) = 20,\mathop {\min }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 6} \right) = - 140\).
d) Xét hàm số \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\).
Ta có: \(f'\left( x \right) = 6{{\rm{x}}^2} - 2{\rm{x}} - 28\)
\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{7}{3}\) (loại) hoặc \(x = - 2\).
\(f\left( { - 2} \right) = 33;f\left( 1 \right) = - 30\)
Vậy \(\mathop {\max }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( { - 2} \right) = 33,\mathop {\min }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( 1 \right) = - 30\).
e) Xét hàm số \(y = f\left( x \right) = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).
Ta có: \(f'\left( x \right) = - 9{{\rm{x}}^2} + 8{\rm{x}} - 5 = - 9{\left( {x - \frac{4}{9}} \right)^2} - \frac{{29}}{9} < 0,\forall x \in \left[ { - 1;2} \right]\)
\(f\left( { - 1} \right) = - 5;f\left( 2 \right) = - 35\)
Vậy \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) = - 5,\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( 2 \right) = - 35\).
Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết cho bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(1).
Giải:
f'(x) = 3x2 - 6x
f'(1) = 3(1)2 - 6(1) = 3 - 6 = -3
Vậy, f'(1) = -3.
Cho hàm số g(x) = sin(2x). Tìm g'(x).
Giải:
g'(x) = cos(2x) * 2 = 2cos(2x)
Vậy, g'(x) = 2cos(2x).
Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:
Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc các bạn học tốt!