Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 17 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\); b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\); c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\); d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\); e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\);

b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\);

c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\);

d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\);

e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo 1

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);f\left( b \right)\).

Bước 3. Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\).

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:

‒ Lập bảng biến thiên của hàm số trên tập hợp đó.

‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.

Lời giải chi tiết

a) Xét hàm số \(y = f\left( x \right) = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 16{\rm{x}} - 12\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 6\) hoặc \(x = - \frac{2}{3}\).

\(f\left( { - 2} \right) = - 15;f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}};f\left( 6 \right) = - 143;f\left( 9 \right) = - 26\)

Vậy \(\mathop {\max }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}},\mathop {\min }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( 6 \right) = - 143\).

b) Xét hàm số \(y = f\left( x \right) = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\).

Ta có: \(f'\left( x \right) = - 6{{\rm{x}}^2} + 18{\rm{x}}\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 3\).

Bảng biến thiên của hàm số trên nửa khoảng \(\left( { - \infty ;4} \right]\):

Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo 2

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( { - \infty ;4} \right]} f\left( x \right) = f\left( 0 \right) = - 17\), hàm số không có giá trị lớn nhất trên nửa khoảng \(\left( { - \infty ;4} \right]\).

c) Xét hàm số \(y = f\left( x \right) = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 12\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 2\).

\(f\left( { - 6} \right) = - 140;f\left( { - 2} \right) = 20;f\left( 2 \right) = - 12;f\left( 3 \right) = - 5\)

Vậy \(\mathop {\max }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 2} \right) = 20,\mathop {\min }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 6} \right) = - 140\).

d) Xét hàm số \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\).

Ta có: \(f'\left( x \right) = 6{{\rm{x}}^2} - 2{\rm{x}} - 28\)

\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{7}{3}\) (loại) hoặc \(x = - 2\).

\(f\left( { - 2} \right) = 33;f\left( 1 \right) = - 30\)

Vậy \(\mathop {\max }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( { - 2} \right) = 33,\mathop {\min }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( 1 \right) = - 30\).

e) Xét hàm số \(y = f\left( x \right) = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Ta có: \(f'\left( x \right) = - 9{{\rm{x}}^2} + 8{\rm{x}} - 5 = - 9{\left( {x - \frac{4}{9}} \right)^2} - \frac{{29}}{9} < 0,\forall x \in \left[ { - 1;2} \right]\)

\(f\left( { - 1} \right) = - 5;f\left( 2 \right) = - 35\)

Vậy \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) = - 5,\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( 2 \right) = - 35\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2 trang 17 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập

Để giải bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:

  1. Xác định đúng công thức đạo hàm cần sử dụng.
  2. Tính đạo hàm của hàm số một cách chính xác.
  3. Thay các giá trị cụ thể vào công thức đạo hàm để tìm kết quả.
  4. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Lời giải chi tiết bài 2 trang 17

Dưới đây là lời giải chi tiết cho bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo:

Câu a:

Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(1).

Giải:

f'(x) = 3x2 - 6x

f'(1) = 3(1)2 - 6(1) = 3 - 6 = -3

Vậy, f'(1) = -3.

Câu b:

Cho hàm số g(x) = sin(2x). Tìm g'(x).

Giải:

g'(x) = cos(2x) * 2 = 2cos(2x)

Vậy, g'(x) = 2cos(2x).

Các lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính tốc độ thay đổi của một đại lượng.
  • Tìm cực trị của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Phân tích sự biến thiên của hàm số.

Tài liệu tham khảo

Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín.
  • Các video bài giảng Toán 12 trên YouTube.

Kết luận

Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc các bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12