Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 62 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 9 trang 62 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 9 trang 62 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Phương trình nào sau đây không phải là phương trình của một mặt cầu? A. ({x^2} + {y^2} + {z^2} + {bf{x}} - 2y + 4z - 3 = 0). B. (2{x^2} + 2{y^2} + 2{{rm{z}}^2} - {bf{x}} - y - {bf{z}} = 0). C. ({x^2} + {y^2} + {{bf{z}}^2} - 2{bf{x}} + 4y - 4z + 10 = 0). D. (2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0).

Đề bài

Phương trình nào sau đây không phải là phương trình của một mặt cầu?

A. \({x^2} + {y^2} + {z^2} + {\bf{x}} - 2y + 4z - 3 = 0\).

B. \(2{x^2} + 2{y^2} + 2{{\rm{z}}^2} - {\bf{x}} - y - {\bf{z}} = 0\).

C. \({x^2} + {y^2} + {{\bf{z}}^2} - 2{\bf{x}} + 4y - 4z + 10 = 0\).

D. \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{ax}} - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\).

Lời giải chi tiết

A. \(a = - \frac{1}{2},b = 1,c = - 2,d = - 3,{a^2} + {b^2} + {c^2} - d = \frac{{33}}{4} > 0\)

Vậy phương trình \({x^2} + {y^2} + {z^2} + {\bf{x}} - 2y + 4z - 3 = 0\) là phương trình mặt cầu.

B. \(2{x^2} + 2{y^2} + 2{{\rm{z}}^2} - {\bf{x}} - y - {\bf{z}} = 0 \Leftrightarrow {x^2} + {y^2} + {{\rm{z}}^2} - \frac{1}{2}{\bf{x}} - \frac{1}{2}y - \frac{1}{2}{\bf{z}} = 0\)

\(a = \frac{1}{4},b = \frac{1}{4},c = \frac{1}{4},d = 0,{a^2} + {b^2} + {c^2} - d = \frac{3}{{16}} > 0\)

Vậy phương trình \(2{x^2} + 2{y^2} + 2{{\rm{z}}^2} - {\bf{x}} - y - {\bf{z}} = 0\) là phương trình mặt cầu.

C. \(a = 1,b = - 2,c = 2,d = 10,{a^2} + {b^2} + {c^2} - d = - 1 < 0\)

Vậy phương trình \({x^2} + {y^2} + {{\bf{z}}^2} - 2{\bf{x}} + 4y - 4z + 10 = 0\) không là phương trình mặt cầu.

D. \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} + 2x + 4y + 3z + 3 = 0\)

\(a = - 1,b = - 2,c = - \frac{3}{2},d = 3,{a^2} + {b^2} + {c^2} - d = \frac{{17}}{4} > 0\)

Vậy phương trình \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0\) là phương trình mặt cầu.

Chọn C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 9 trang 62 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 9 trang 62 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Mục tiêu chính là giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế.

Nội dung chi tiết bài 9 trang 62

Bài 9 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu học sinh tính đạo hàm của một hàm số cho trước. Đây là dạng bài tập cơ bản nhất, đòi hỏi học sinh phải nắm vững các quy tắc tính đạo hàm.
  2. Tìm đạo hàm cấp hai: Yêu cầu học sinh tính đạo hàm cấp hai của một hàm số. Dạng bài tập này đòi hỏi học sinh phải tính đạo hàm cấp một trước, sau đó tính đạo hàm của đạo hàm cấp một.
  3. Ứng dụng đạo hàm để giải phương trình: Yêu cầu học sinh sử dụng đạo hàm để giải phương trình. Dạng bài tập này đòi hỏi học sinh phải hiểu rõ mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số.
  4. Bài toán thực tế: Yêu cầu học sinh vận dụng đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi, tối ưu hóa,…

Hướng dẫn giải chi tiết bài 9 trang 62

Để giải bài 9 trang 62 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  • Nắm vững các quy tắc tính đạo hàm: Đạo hàm của hàm số lũy thừa, đạo hàm của hàm lượng giác, đạo hàm của hàm mũ, đạo hàm của hàm logarit, đạo hàm của tổng, hiệu, tích, thương của các hàm số,…
  • Thực hành giải nhiều bài tập: Giải càng nhiều bài tập, bạn càng nắm vững kiến thức và kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng máy tính cầm tay hoặc các phần mềm tính đạo hàm để kiểm tra kết quả.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).

Giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, bạn cần chú ý:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Rút gọn kết quả một cách tối đa.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 9 trang 62 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 12