Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 84 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Một công ty công nghệ cung cấp hai phiên bản Basic và Pro của một phần mềm. Tỉ lệ người sử dụng hai phiên bản này lần lượt là 80% và 20%. Kết quả điều tra cho thấy có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng; còn tỉ lệ này của phiên bản Pro là 50%. Chọn ngẫu nhiên một người sử dụng phần mềm trên của công ty. a) Tính xác suất để người này mua bản cập nhật sau 1 năm sử dụng. b) Biết người dùng mua bản cập nhật sau 1 năm sử dụng, tính xác suất người đó sử dụng phiê
Đề bài
Một công ty công nghệ cung cấp hai phiên bản Basic và Pro của một phần mềm. Tỉ lệ người sử dụng hai phiên bản này lần lượt là 80% và 20%. Kết quả điều tra cho thấy có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng; còn tỉ lệ này của phiên bản Pro là 50%.
Chọn ngẫu nhiên một người sử dụng phần mềm trên của công ty.
a) Tính xác suất để người này mua bản cập nhật sau 1 năm sử dụng.
b) Biết người dùng mua bản cập nhật sau 1 năm sử dụng, tính xác suất người đó sử dụng phiên bản Basic ở năm đầu tiên.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
‒ Sử dụng công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết
a) Gọi \(A\) là biến cố “Người dùng mua bản cập nhật sau 1 năm sử dụng” và \(B\) là biến cố “Người dùng sử dụng phiên bản Basic ở năm đầu tiên”.
Do tỉ lệ người sử dụng hai phiên bản Basic là 80% nên ta có \(P\left( B \right) = 0,8\).
Do tỉ lệ người sử dụng hai phiên bản Pro là 20% nên ta có \(P\left( {\overline B } \right) = 0,2\).
Có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng nên ta có \(P\left( {A|B} \right) = 0,3\).
Có 50% người dùng phiên bản Pro sẽ mua bản cập nhật sau 1 năm sử dụng nên ta có \(P\left( {A|\overline B } \right) = 0,5\).
Theo công thức xác suất toàn phần, xác suất người được chọn mua bản cập nhật sau 1 năm sử dụng là:
\(P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( B \right)P\left( {A|B} \right) = 0,8.0,3 + 0,2,0,5 = 0,34\).
b) Xác suất người được chọn sử dụng phiên bản Basic ở năm đầu tiên, biết rằng người dùng đó mua bản cập nhật sau 1 năm sử dụng là:
\(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,8.0,3}}{{0,34}} = \frac{{12}}{{17}} \approx 0,706\).
Bài 4 trang 84 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 4 trang 84 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, học sinh cần nắm vững các kiến thức và kỹ năng sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)'
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Để hỗ trợ quá trình học tập và giải bài tập, học sinh có thể tham khảo các tài liệu sau:
Bài 4 trang 84 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các kiến thức và kỹ năng cần thiết, cùng với việc luyện tập thường xuyên, học sinh có thể tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.