Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 14 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 14 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, chính xác và dễ hiểu nhất để hỗ trợ quá trình học tập của bạn.

Tính các tích phân sau: a) (intlimits_0^pi {left( {2cos x + 1} right)dx} ); b) (intlimits_0^pi {left( {1 + cot x} right)sin xdx} ); c) (intlimits_0^{frac{pi }{4}} {{{tan }^2}xdx} ).

Đề bài

Tính các tích phân sau:

a) \(\int\limits_0^\pi {\left( {2\cos x + 1} \right)dx} \);

b) \(\int\limits_0^\pi {\left( {1 + \cot x} \right)\sin xdx} \);

c) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} \).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 14 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Sử dụng biến đổi lượng giác.

‒ Sử dụng công thức:

• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).

• \(\int {\sin xdx} = - \cos x + C\).

• \(\int {\cos xdx} = \sin x + C\).

Lời giải chi tiết

a) \(\int\limits_0^\pi {\left( {2\cos x + 1} \right)dx} = \left. {\left( {2\sin x + x} \right)} \right|_0^\pi = \left( {2\sin \pi + \pi } \right) - \left( {2\sin 0 + 0} \right) = \pi \)

b)

\(\begin{array}{l}\int\limits_0^\pi {\left( {1 + \cot x} \right)\sin xdx} = \int\limits_0^\pi {\left( {\sin x + \cos x} \right)dx} = \left. {\left( { - \cos x + \sin x} \right)} \right|_0^\pi \\ = \left( { - \cos \pi + \sin \pi } \right) - \left( { - \cos 0 + \sin 0} \right) = 2\end{array}\)

c) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \left. {\left( {\tan x - x} \right)} \right|_0^{\frac{\pi }{4}} = \left( {\tan \frac{\pi }{4} - \frac{\pi }{4}} \right) - \left( {\tan 0 - 0} \right) = 1 - \frac{\pi }{4}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 14 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 4 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Tìm cực trị của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán tối ưu.

Lời giải chi tiết bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 4 trang 14, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a:

Đề bài: (Ví dụ: Tính đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 1)

Lời giải:

f'(x) = 3x^2 - 6x + 2

Câu b:

Đề bài: (Ví dụ: Tìm cực trị của hàm số f(x) = x^3 - 3x^2 + 2x - 1)

Lời giải:

  1. Tính đạo hàm f'(x) = 3x^2 - 6x + 2
  2. Giải phương trình f'(x) = 0 để tìm các điểm cực trị.
  3. Xác định loại cực trị (cực đại hoặc cực tiểu) bằng cách sử dụng dấu của đạo hàm cấp hai.
  4. Tính giá trị của hàm số tại các điểm cực trị.

Câu c:

Đề bài: (Ví dụ: Khảo sát sự biến thiên của hàm số f(x) = x^3 - 3x^2 + 2x - 1)

Lời giải:

  • Xác định tập xác định của hàm số.
  • Tính đạo hàm f'(x).
  • Tìm các điểm cực trị.
  • Xác định khoảng đồng biến và nghịch biến của hàm số.
  • Tìm giới hạn của hàm số khi x tiến tới vô cùng và các điểm bất thường.
  • Vẽ đồ thị hàm số.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học Toán online uy tín
  • Các video hướng dẫn giải bài tập Toán 12

Kết luận

Bài 4 trang 14 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, các bạn học sinh sẽ tự tin hơn khi đối mặt với bài tập này.

Tài liệu, đề thi và đáp án Toán 12