Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 104 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 104 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải, đáp án chính xác và giải thích rõ ràng từng bước để giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Bác Xuân biểu diễn thời gian tập thể dục mỗi ngày của mình trong 120 ngày liên tiếp ở biểu đồ tần số tương đối ghép nhóm dưới đây. a) Lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên. b) Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).

Đề bài

Bác Xuân biểu diễn thời gian tập thể dục mỗi ngày của mình trong 120 ngày liên tiếp ở biểu đồ tần số tương đối nghép nhóm dưới đây.

Giải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên.

b) Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)

‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).

Lời giải chi tiết

a) Ta có bảng tần số ghép nhóm:

Giải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo 3

b) Ta có bảng sau:

Giải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo 4

Cỡ mẫu \(n = 48 + 36 + 18 + 12 + 6 = 120\)

Số trung bình của mẫu số liệu ghép nhóm là:

\(\overline x = \frac{{48.7,5 + 36.22,5 + 18.37,5 + 12.52,5 + 6.67,5}}{{120}} = 24\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\({S^2} = \frac{1}{{120}}\left( {{{48.7,5}^2} + {{36.22,5}^2} + {{18.37,5}^2} + {{12.52,5}^2} + {{6.67,5}^2}} \right) - {24^2} = 312,75\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {312,75} \approx 17,68\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 104 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 104 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 104 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung bài 4 trang 104 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 4 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến: Yêu cầu tìm phương trình tiếp tuyến của đồ thị hàm số tại một điểm cho trước.
  • Ứng dụng đạo hàm để giải các bài toán về cực trị: Yêu cầu tìm cực đại, cực tiểu của hàm số.

Phương pháp giải bài 4 trang 104 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giải bài 4 trang 104 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, học sinh cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn giản như xn, sinx, cosx, tanx, ex, ln(x),...
  2. Vận dụng thành thạo các quy tắc đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số, quy tắc đạo hàm của hàm hợp.
  3. Biết cách biến đổi đại số: Để đơn giản hóa biểu thức trước khi tính đạo hàm.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, cần kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 4 trang 104 Sách bài tập Toán 12 - Chân trời sáng tạo

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = (x3)' + (2x2)' - (5x)' + (1)'

f'(x) = 3x2 + 4x - 5 + 0

f'(x) = 3x2 + 4x - 5

Lưu ý khi giải bài 4 trang 104 Sách bài tập Toán 12 - Chân trời sáng tạo

Trong quá trình giải bài tập, học sinh cần lưu ý những điều sau:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu.
  • Sử dụng đúng công thức và quy tắc đạo hàm.
  • Biến đổi đại số một cách cẩn thận.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 4 trang 104 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các kiến thức và kỹ năng cần thiết, học sinh có thể tự tin giải quyết các bài toán liên quan đến đạo hàm một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 12