Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng theo dõi và tham khảo!
Cho điểm (Mleft( {5; - 7; - 2} right)) và vectơ (overrightarrow a = left( { - 3;0;1} right)). Hãy biểu diễn mỗi vectơ sau theo các vectơ (overrightarrow i ,overrightarrow j ,overrightarrow k ). a) (overrightarrow {OM} ); b) (overrightarrow a ).
Đề bài
Cho điểm \(M\left( {5; - 7; - 2} \right)\) và vectơ \(\overrightarrow a = \left( { - 3;0;1} \right)\). Hãy biểu diễn mỗi vectơ sau theo các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).
a) \(\overrightarrow {OM} \);
b) \(\overrightarrow a \).
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ:
• \(\overrightarrow {OM} = \left( {a;b;c} \right) \Leftrightarrow M\left( {a;b;c} \right)\).
• \(\overrightarrow u = a\overrightarrow i + b\overrightarrow j + c\overrightarrow k \Leftrightarrow \overrightarrow u = \left( {a;b;c} \right)\).
‒ Sử dụng biểu thức toạ độ của phép nhân một số với một vectơ:
Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) thì \(m\overrightarrow u = \left( {m{x_1};m{y_1};m{z_1}} \right)\) với \(m \in \mathbb{R}\).
Lời giải chi tiết
a) \(M\left( {5; - 7; - 2} \right) \Leftrightarrow \overrightarrow {OM} = \left( {5; - 7; - 2} \right) = 5\overrightarrow i - 7\overrightarrow j - 2\overrightarrow k \).
b) \(\overrightarrow a = \left( { - 3;0;1} \right) = - 3\overrightarrow i + \overrightarrow k \).
Bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các kỹ năng biến đổi đại số để tìm đạo hàm của hàm số phức tạp hơn. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu và ứng dụng của đạo hàm trong các lĩnh vực khác.
Bài 5 trang 71 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, học sinh cần:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Khi giải bài tập về đạo hàm, cần chú ý đến các điểm sau:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo và các tài liệu tham khảo khác.
Bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả.
Hàm số | Đạo hàm |
---|---|
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin(x) | f'(x) = cos(x) |
f(x) = cos(x) | f'(x) = -sin(x) |