Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 71 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 71 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 71 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng theo dõi và tham khảo!

Cho điểm (Mleft( {5; - 7; - 2} right)) và vectơ (overrightarrow a = left( { - 3;0;1} right)). Hãy biểu diễn mỗi vectơ sau theo các vectơ (overrightarrow i ,overrightarrow j ,overrightarrow k ). a) (overrightarrow {OM} ); b) (overrightarrow a ).

Đề bài

Cho điểm \(M\left( {5; - 7; - 2} \right)\) và vectơ \(\overrightarrow a = \left( { - 3;0;1} \right)\). Hãy biểu diễn mỗi vectơ sau theo các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).

a) \(\overrightarrow {OM} \);

b) \(\overrightarrow a \).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 71 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Sử dụng toạ độ của vectơ:

• \(\overrightarrow {OM} = \left( {a;b;c} \right) \Leftrightarrow M\left( {a;b;c} \right)\).

• \(\overrightarrow u = a\overrightarrow i + b\overrightarrow j + c\overrightarrow k \Leftrightarrow \overrightarrow u = \left( {a;b;c} \right)\).

‒ Sử dụng biểu thức toạ độ của phép nhân một số với một vectơ:

Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) thì \(m\overrightarrow u = \left( {m{x_1};m{y_1};m{z_1}} \right)\) với \(m \in \mathbb{R}\).

Lời giải chi tiết

a) \(M\left( {5; - 7; - 2} \right) \Leftrightarrow \overrightarrow {OM} = \left( {5; - 7; - 2} \right) = 5\overrightarrow i - 7\overrightarrow j - 2\overrightarrow k \).

b) \(\overrightarrow a = \left( { - 3;0;1} \right) = - 3\overrightarrow i + \overrightarrow k \).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5 trang 71 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5 trang 71 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các kỹ năng biến đổi đại số để tìm đạo hàm của hàm số phức tạp hơn. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung bài tập

Bài 5 trang 71 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu học sinh tính đạo hàm của các hàm số đa thức, phân thức, hàm lượng giác, hàm mũ, hàm logarit và các hàm hợp.
  • Tìm đạo hàm cấp hai: Yêu cầu học sinh tính đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến: Yêu cầu học sinh tìm phương trình tiếp tuyến của đồ thị hàm số tại một điểm cho trước.
  • Giải phương trình đạo hàm: Yêu cầu học sinh giải các phương trình có chứa đạo hàm để tìm các giá trị của x thỏa mãn điều kiện cho trước.

Phương pháp giải bài tập

Để giải bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, học sinh cần:

  1. Nắm vững các quy tắc tính đạo hàm: Bao gồm quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit).
  2. Rèn luyện kỹ năng biến đổi đại số: Để đơn giản hóa biểu thức trước khi tính đạo hàm.
  3. Sử dụng các công thức đạo hàm: Một cách chính xác và linh hoạt.
  4. Kiểm tra lại kết quả: Để đảm bảo tính chính xác của đáp án.

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, cần chú ý đến các điểm sau:

  • Xác định đúng miền xác định của hàm số: Để đảm bảo rằng đạo hàm tồn tại tại mọi điểm trong miền xác định.
  • Sử dụng đúng công thức đạo hàm: Để tránh sai sót trong quá trình tính toán.
  • Kiểm tra lại kết quả: Để đảm bảo tính chính xác của đáp án.

Bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo và các tài liệu tham khảo khác.

Kết luận

Bài 5 trang 71 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả.

Hàm sốĐạo hàm
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tài liệu, đề thi và đáp án Toán 12