Logo Header
  1. Môn Toán
  2. Giải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 14 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 14 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này nhé!

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Đồ thị hàm số (y = frac{{{x^2} - 2{rm{x}}}}{{x + 1}}) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng: a) (x = 1) và (y = x - 3). b) (x = 1) và (y = - x + 3). c) (x = - 1) và (y = x - 3). d) (x = - 1) và (y = x + 3).

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Đồ thị hàm số \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}\) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng:

a) \(x = 1\) và \(y = x - 3\).

b) \(x = 1\) và \(y = - x + 3\).

c) \(x = - 1\) và \(y = x - 3\).

d) \(x = - 1\) và \(y = x + 3\).

Phương pháp giải - Xem chi tiếtGiải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}} \right) = - \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}} \right) = + \infty \)

Vậy \({\rm{x}} = - 1\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2{\rm{x}}}}{{x\left( {x + 1} \right)}} = 1\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{\rm{x}}}}{{x + 1}} = - 3\)

Vậy đường thẳng \(y = x - 3\) là tiệm cận xiên của đồ thị hàm số đã cho.

a) S.

b) S.

c) Đ.

d) S.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 14 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 14 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 14 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các hệ số trong biểu thức đạo hàm.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Phương pháp giải

Để giải bài 14 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo hiệu quả, học sinh cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  2. Vận dụng các quy tắc đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số.
  3. Sử dụng quy tắc đạo hàm của hàm hợp: Đây là quy tắc quan trọng để giải các bài toán phức tạp.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Lời giải chi tiết bài 14 trang 35

Bài 14.1: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1 tại x = 2.

Lời giải:

f'(x) = 3x2 - 4x + 5

f'(2) = 3(2)2 - 4(2) + 5 = 12 - 8 + 5 = 9

Vậy, đạo hàm của hàm số f(x) tại x = 2 là 9.

Bài 14.2: Tìm đạo hàm của hàm số y = sin(2x + 1).

Lời giải:

y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)

Vậy, đạo hàm của hàm số y = sin(2x + 1) là y' = 2cos(2x + 1).

Ví dụ minh họa

Ví dụ: Cho hàm số y = (x2 + 1) / (x - 1). Tìm đạo hàm của hàm số.

Lời giải:

y' = [(x2 + 1)'(x - 1) - (x2 + 1)(x - 1)'] / (x - 1)2

y' = [2x(x - 1) - (x2 + 1)] / (x - 1)2

y' = (2x2 - 2x - x2 - 1) / (x - 1)2

y' = (x2 - 2x - 1) / (x - 1)2

Lưu ý khi giải bài tập

  • Luôn kiểm tra điều kiện xác định của hàm số trước khi tính đạo hàm.
  • Sử dụng đúng các công thức và quy tắc đạo hàm.
  • Rèn luyện kỹ năng biến đổi đại số để đơn giản hóa biểu thức đạo hàm.
  • Thực hành giải nhiều bài tập khác nhau để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo

Ngoài sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học Toán online uy tín
  • Các video bài giảng về đạo hàm

Kết luận

Bài 14 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng mà giaitoan.edu.vn cung cấp, các bạn học sinh sẽ tự tin hơn khi giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12