Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 26 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 10 trang 26 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 10 trang 26 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 10 trang 26 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng khám phá lời giải chi tiết ngay sau đây!

Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột \(x\left( m \right)\) thì mặt cắt là hình tròn có bán kính \(1 - \frac{{\sqrt x }}{4}\left( m \right)\) với \(0 \le x \le 9\). Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).

Đề bài

Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột \(x\left( m \right)\) thì mặt cắt là hình tròn có bán kính \(1 - \frac{{\sqrt x }}{4}\left( m \right)\) với \(0 \le x \le 9\). Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 26 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Sử dụng công thức: Tính thể tích khối tròn xoay khi xoay hình phẳng có thiết diện có diện tích \(S\left( x \right)\) và hai đường thẳng \(x = a,x = b\) quay quanh trục \(Ox\) là: \(V = \int\limits_a^b {S\left( x \right)dx} \).

Lời giải chi tiết

Diện tích hình tròn có bán kính \(R = 1 - \frac{{\sqrt x }}{4}\left( m \right)\) là:

\(S\left( x \right) = \pi {R^2} = \pi {\left( {1 - \frac{{\sqrt x }}{4}} \right)^2}\left( {{m^2}} \right)\)

Thể tích của cột bê tông là:

\(\begin{array}{l}V = \int\limits_0^9 {S\left( x \right)dx} = \int\limits_0^9 {\pi {{\left( {1 - \frac{{\sqrt x }}{4}} \right)}^2}dx} = \pi \int\limits_0^9 {\left( {1 - \frac{1}{2}{x^{\frac{1}{2}}} + \frac{1}{{16}}x} \right)dx} = \left. {\left( {x - \frac{1}{2}.\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + \frac{1}{{16}}.\frac{{{x^2}}}{2}} \right)} \right|_0^9\\ = \frac{{81\pi }}{{32}} \approx 7,95\left( {{m^3}} \right)\end{array}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 10 trang 26 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 10 trang 26 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 10 trang 26 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung bài tập

Bài 10 trang 26 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
  • Giải các bài toán thực tế liên quan đến đạo hàm.

Lời giải chi tiết bài 10 trang 26

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 10 trang 26, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn cần nắm vững các kiến thức cơ bản về đạo hàm và quy tắc tính đạo hàm.

Câu a: (Ví dụ minh họa)

Giả sử câu a yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Lời giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Câu b: (Ví dụ minh họa)

Giả sử câu b yêu cầu tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).

Lời giải:

g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x))

g'(x) = cos2(x) - sin2(x)

Vậy, đạo hàm của hàm số g(x) là cos2(x) - sin2(x).

Mẹo giải bài tập đạo hàm

Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng quy tắc tính đạo hàm một cách linh hoạt.
  • Phân tích kỹ đề bài để xác định đúng dạng bài tập.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm cực trị và khoảng đơn điệu của hàm số trong kinh tế.
  • Giải các bài toán tối ưu hóa trong kỹ thuật.

Tài liệu tham khảo

Để học tốt môn Toán 12, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín.
  • Các video bài giảng Toán 12 trên YouTube.

Kết luận

Hy vọng rằng, với lời giải chi tiết và những mẹo giải bài tập đạo hàm mà chúng tôi đã cung cấp, các bạn học sinh sẽ tự tin hơn khi giải bài 10 trang 26 sách bài tập Toán 12 Chân trời sáng tạo. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12