Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 36 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Người ta muốn làm một chiếc hộp hình hộp chữ nhật có đáy hình vuông và thể tích là \(10l\), Diện tích toàn phần nhỏ nhất của hộp là bao nhiêu?

Đề bài

Người ta muốn làm một chiếc hộp hình hộp chữ nhật có đáy hình vuông và thể tích là \(10l\), Diện tích toàn phần nhỏ nhất của hộp là bao nhiêu?

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng công thức tính diện tích toàn phần hình hộp chữ nhật để tính diện tích toàn phần \(S\left( x \right)\), sau đó tìm giá trị nhỏ nhất của hàm số \(S\left( x \right)\).

Lời giải chi tiết

Giả sử cạnh của hộp là: \({\rm{x}}\left( {dm} \right)\), chiều cao của hộp là: \({\rm{h}}\left( {dm} \right)\).

Thể tích của hộp là: \(V = {x^2}.h = 10 \Leftrightarrow h = \frac{{10}}{{{x^2}}}\).

Diện tích toàn phần của hình hộp là \(S = 2{{\rm{x}}^2} + 4{\rm{x}}.h = 2{{\rm{x}}^2} + 4{\rm{x}}.\frac{{10}}{{{x^2}}} = 2{{\rm{x}}^2} + \frac{{40}}{x}\left( {d{m^2}} \right)\)

Xét hàm số \(S\left( x \right) = 2{{\rm{x}}^2} + \frac{{40}}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).

Ta có: \(S'\left( x \right) = 4{\rm{x}} - \frac{{40}}{{{x^2}}};S'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{10}}\).

Bảng biến thiên:

Giải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo 2

\(V\left( 0 \right) = 0;V\left( 2 \right) = 128;V\left( 6 \right) = 0\)

Vậy \(\mathop {\max }\limits_{\left[ {0;6} \right]} V\left( x \right) = V\left( 2 \right) = 128\).

Vậy với \(x = 2\left( {cm} \right)\) thì thể tích của hình hộp là lớn nhất.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 2 trang 36 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 2 trang 36 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập

Để giải bài 2 trang 36 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:

  1. Xác định đúng công thức đạo hàm cần sử dụng.
  2. Tính đạo hàm của hàm số một cách chính xác.
  3. Phân tích kết quả và đưa ra kết luận phù hợp.

Lời giải chi tiết bài 2 trang 36

Dưới đây là lời giải chi tiết bài 2 trang 36 sách bài tập Toán 12 Chân trời sáng tạo:

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1

Giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x)

Giải:

g'(x) = cos(x) - sin(x)

Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Thực hành tính đạo hàm thường xuyên để nâng cao kỹ năng.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán khi cần thiết.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính tốc độ thay đổi của một đại lượng.
  • Tìm cực trị của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Nghiên cứu sự biến thiên của hàm số.

Tài liệu tham khảo

Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín.
  • Các video bài giảng Toán 12 trên YouTube.

Kết luận

Bài 2 trang 36 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12