Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 109 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 109 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 3 trang 109 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Nhiệt độ không khí trung bình hằng năm tại hai trạm quan trắc đặt ở Quy Nhơn và Cà Mau từ năm 2006 đến năm 2022 được ghi lại như sau: a) Hãy chia dữ liệu trên thành 4 nhóm có độ dài bằng nhau với nhóm đầu tiên là \(\left[ {26,7;27,1} \right)\). b) Hãy so sánh độ phân tán nhiệt độ không khí trung bình mỗi năm tại hai khu vực trên: ‒ theo khoảng biến thiên; – theo khoảng tứ phân vị; – theo phương sai.

Đề bài

Nhiệt độ không khí trung bình hằng năm tại hai trạm quan trắc đặt ở Quy Nhơn và Cà Mau từ năm 2006 đến năm 2022 được ghi lại như sau:

Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Hãy chia dữ liệu trên thành 4 nhóm có độ dài bằng nhau với nhóm đầu tiên là \(\left[ {26,7;27,1} \right)\).

b) Hãy so sánh độ phân tán nhiệt độ không khí trung bình mỗi năm tại hai khu vực trên:

‒ theo khoảng biến thiên;

– theo khoảng tứ phân vị;

– theo phương sai.

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)

trong đó:

• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;

• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);

• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);

• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)

Lời giải chi tiết

a) Bảng tần số ghép nhóm

Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo 3

b) • Khoảng biến thiên của mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình tại Quy Nhơn là: \({R_{QN}} = 28,3 - 26,7 = 1,6\left( {^ \circ C} \right)\).

Khoảng biển thiên của mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình tại Cà Mau là: \({R_{CM}} = 28,3 - 27,1 = 1,2\left( {^ \circ C} \right)\).

Do đó, nếu so sánh theo khoảng biến thiên, nhiệt độ không khí trung bình tại Quy Nhơn phân tán hơn tại Cà Mau.

• Tứ phân vị của mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình tại Quy Nhơn:

Cỡ mẫu: \({n_{QN}} = 3 + 9 + 4 + 1 = 17\)

Gọi \({x_1};{x_2};...;{x_{17}}\) là mẫu số liệu gốc gồm nhiệt độ không khí trung bình tại Quy Nhơn theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_5} \in \left[ {27,1;27,5} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_{QN1}} = 27,1 + \frac{{\frac{{1.17}}{4} - 3}}{9}\left( {27,5 - 27,1} \right) = \frac{{1222}}{{45}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{13}} \in \left[ {27,5;27,9} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_{QN3}} = 27,5 + \frac{{\frac{{3.17}}{4} - \left( {3 + 9} \right)}}{4}\left( {27,9 - 27,5} \right) = \frac{{1103}}{{40}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

\(\Delta {Q_{QN}} = {Q_{QN3}} - {Q_{QN1}} = \frac{{1103}}{{40}} - \frac{{1222}}{{45}} \approx 0,42\) (g).

Tứ phân vị của mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình tại Cà Mau:

Cỡ mẫu: \({n_{CM}} = 17\)

Gọi \({x_1};{x_2};...;{x_{17}}\) là mẫu số liệu gốc gồm nhiệt độ không khí trung bình tại Cà Mau theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_5} \in \left[ {27,5;27,9} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_{CM1}} = 27,5 + \frac{{\frac{{1.17}}{4} - 1}}{{10}}\left( {27,9 - 27,5} \right) = \frac{{2763}}{{100}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{13}} \in \left[ {27,9;28,3} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_{QN3}} = 27,9 + \frac{{\frac{{3.17}}{4} - \left( {1 + 10} \right)}}{6}\left( {28,3 - 27,9} \right) = \frac{{1681}}{{60}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

\(\Delta {Q_{CM}} = {Q_{CM3}} - {Q_{CM1}} = \frac{{1681}}{{60}} - \frac{{2763}}{{100}} \approx 0,39\left( {^ \circ C} \right)\).

Do đó, nếu so sánh theo khoảng tứ phân vị, nhiệt độ không khí trung bình tại Quy Nhơn phân tán hơn tại Cà Mau.

• Phương sai của mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình tại Quy Nhơn:

Số trung bình của mẫu số liệu ghép nhóm là:

\(\overline {{x_{QN}}} = \frac{{3.26,9 + 9.27,3 + 4.27,7 + 1.28,1}}{{17}} = \frac{{4653}}{{170}}\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\(S_{QN}^2 = \frac{1}{{17}}\left( {{{3.26,9}^2} + {{9.27,3}^2} + {{4.27,7}^2} + {{1.28,1}^2}} \right) - {\left( {\frac{{4653}}{{170}}} \right)^2} \approx 0,099\)

Phương sai của mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình tại Cà Mau:

Số trung bình của mẫu số liệu ghép nhóm là:

\(\overline {{x_{CM}}} = \frac{{1.27,3 + 10.27,7 + 6.28,1}}{{17}} = \frac{{4729}}{{170}}\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\(S_{CM}^2 = \frac{1}{{17}}\left( {{{1.27,3}^2} + {{10.27,7}^2} + {{6.28,1}^2}} \right) - {\left( {\frac{{4729}}{{170}}} \right)^2} \approx 0,052\)

Do \(S_{QN}^2 > S_{CM}^2\) nên khi so sánh theo phương sai, nhiệt độ không khí trung bình tại Quy Nhơn phân tán hơn tại Cà Mau.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 109 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 109 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các quy tắc đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung chi tiết bài 3 trang 109

Bài 3 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước. Đây là dạng bài tập cơ bản nhất, đòi hỏi học sinh phải thành thạo các quy tắc tính đạo hàm.
  2. Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số. Dạng bài tập này đòi hỏi học sinh phải tính đạo hàm cấp một trước, sau đó tính đạo hàm của đạo hàm cấp một.
  3. Ứng dụng đạo hàm để giải phương trình: Yêu cầu sử dụng đạo hàm để giải phương trình. Dạng bài tập này đòi hỏi học sinh phải hiểu rõ mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số.
  4. Bài toán thực tế: Một số bài tập có thể liên hệ với các bài toán thực tế, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết.

Hướng dẫn giải chi tiết bài 3 trang 109

Để giải bài 3 trang 109 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn có thể tham khảo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các hàm số và các điều kiện cho trước.
  2. Chọn quy tắc đạo hàm phù hợp: Dựa vào dạng hàm số, chọn quy tắc đạo hàm phù hợp để áp dụng.
  3. Thực hiện tính đạo hàm: Thực hiện tính đạo hàm theo quy tắc đã chọn, chú ý đến các bước biến đổi và kiểm tra lại kết quả.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả đạo hàm của bạn là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

f'(x) = d/dx (3x2 + 2x - 1) = 6x + 2

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).

Giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Lưu ý quan trọng

  • Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản.
  • Luyện tập thường xuyên để thành thạo các kỹ năng giải toán.
  • Kiểm tra lại kết quả đạo hàm để đảm bảo tính chính xác.
  • Sử dụng các công cụ hỗ trợ tính đạo hàm trực tuyến để kiểm tra kết quả của bạn.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 3 trang 109 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài toán này. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12