Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 45 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 45 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 45 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 45 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau: \(\left( P \right):x + y - z + 3 = 0,\left( Q \right):2x + 2y - 2z + 99 = 0,\left( R \right):3x + 3y + 6z + 7 = 0\).

Đề bài

Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau:

\(\left( P \right):x + y - z + 3 = 0,\left( Q \right):2x + 2y - 2z + 99 = 0,\left( R \right):3x + 3y + 6z + 7 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 45 sách bài tập toán 12 - Chân trời sáng tạo 1

Cho hai mặt phẳng \(\left( {{\alpha _1}} \right):{A_1}x + {B_1}y + {C_1}{\rm{z}} + {D_1} = 0\) và \(\left( {{\alpha _2}} \right):{A_2}x + {B_2}y + {C_2}{\rm{z}} + {D_2} = 0\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\).

Khi đó \(\left( {{\alpha _1}} \right)\parallel \left( {{\alpha _2}} \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} = k\overrightarrow {{n_2}} \\{D_1} \ne k{{\rm{D}}_2}\end{array} \right.\left( {k \in \mathbb{R}} \right)\)

\(\left( {{\alpha _1}} \right) \bot \left( {{\alpha _2}} \right) \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow {A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2} = 0\)

Lời giải chi tiết

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1;1; - 1} \right)\), mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {2;2; - 2} \right)\), mặt phẳng \(\left( R \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_3}} = \left( {3;3;6} \right)\).

Ta có:

\(\overrightarrow {{n_1}} = \frac{1}{2}\overrightarrow {{n_2}} \) và \(3 \ne \frac{1}{2}.99\) nên \(\left( P \right)\parallel \left( Q \right)\).

\(\overrightarrow {{n_1}} .\overrightarrow {{n_3}} = 1.3 + 1.3 + \left( { - 1} \right).6 = 0\) nên \(\left( P \right) \bot \left( R \right)\).

\(\overrightarrow {{n_2}} .\overrightarrow {{n_3}} = 2.3 + 2.3 + \left( { - 2} \right).6 = 0\) nên \(\left( Q \right) \bot \left( R \right)\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 45 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 45 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 45 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán 12.

Nội dung bài 3 trang 45 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
  • Giải các bài toán thực tế liên quan đến đạo hàm.

Lời giải chi tiết bài 3 trang 45 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giúp học sinh hiểu rõ hơn về cách giải bài 3 trang 45, chúng ta sẽ đi vào phân tích từng phần của bài tập. Dưới đây là lời giải chi tiết cho từng câu hỏi:

Câu a: (Ví dụ minh họa - cần thay thế bằng nội dung thực tế của bài tập)

Đề bài: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Lời giải:

  1. Tính đạo hàm f'(x) = 2x + 2.
  2. Thay x = 1 vào f'(x) để tìm f'(1) = 2(1) + 2 = 4.
  3. Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Câu b: (Ví dụ minh họa - cần thay thế bằng nội dung thực tế của bài tập)

Đề bài: Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).

Lời giải:

Sử dụng quy tắc đạo hàm của tích, ta có:

g'(x) = (sin(x))' * cos(x) + sin(x) * (cos(x))' = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x).

Các lưu ý khi giải bài 3 trang 45 Sách bài tập Toán 12 - Chân trời sáng tạo

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng thành thạo các quy tắc tính đạo hàm (quy tắc tích, quy tắc thương, quy tắc hàm hợp).
  • Kiểm tra lại kết quả sau khi giải bài tập.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải toán.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm cực trị của hàm số trong kinh tế.
  • Xác định khoảng đơn điệu của hàm số trong các bài toán tối ưu hóa.

Tài liệu tham khảo

Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo.
  • Sách bài tập Toán 12 Chân trời sáng tạo.
  • Các trang web học Toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 3 trang 45 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập này và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12