Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 34 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 9 trang 34 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, hỗ trợ học sinh trên con đường chinh phục môn Toán.

Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên.

Đề bài

Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\).

A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\).

B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\).

C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\).

D. Đồ thị hàm số không có tiệm cận xiên.

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2{\rm{x}} + 6}}{{x\left( {x + 1} \right)}} = 1\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{\rm{x}} + 6}}{{x + 1}} = - 3\)

Vậy đường thẳng \(y = x - 3\) là tiệm cận xiên của đồ thị hàm số đã cho.

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 9 trang 34 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 9 trang 34 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài tập

Bài 9 trang 34 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.
  • Khảo sát hàm số bằng đạo hàm (xác định khoảng đồng biến, nghịch biến, cực trị).

Phương pháp giải bài tập

Để giải bài 9 trang 34 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững lý thuyết: Đảm bảo bạn hiểu rõ các định nghĩa, công thức và quy tắc về đạo hàm.
  2. Xác định đúng công thức: Lựa chọn công thức đạo hàm phù hợp với từng loại hàm số.
  3. Thực hiện tính toán cẩn thận: Tránh sai sót trong quá trình tính toán đạo hàm.
  4. Kiểm tra lại kết quả: Sau khi tính toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1 tại x = 2.

Giải:

f'(x) = 3x2 + 4x - 5

f'(2) = 3(2)2 + 4(2) - 5 = 12 + 8 - 5 = 15

Vậy, đạo hàm của hàm số f(x) tại x = 2 là 15.

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, bạn cần lưu ý một số điểm sau:

  • Đạo hàm của một tổng (hiệu) bằng tổng (hiệu) các đạo hàm.
  • Đạo hàm của một tích bằng đạo hàm của hàm số thứ nhất nhân với hàm số thứ hai cộng với hàm số thứ nhất nhân với đạo hàm của hàm số thứ hai.
  • Đạo hàm của một thương bằng đạo hàm của hàm số thứ nhất nhân với hàm số thứ hai trừ đi hàm số thứ nhất nhân với đạo hàm của hàm số thứ hai, tất cả chia cho bình phương của hàm số thứ hai.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể thực hành với các bài tập sau:

  • Tính đạo hàm của hàm số g(x) = sin(x) + cos(x).
  • Tìm đạo hàm của hàm số h(x) = ex + ln(x).
  • Ứng dụng đạo hàm để tìm tiếp tuyến của đồ thị hàm số y = x2 tại x = 1.

Kết luận

Bài 9 trang 34 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn khi giải bài tập này. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12