Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 6 trang 17 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 6 trang 17 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Một chất điểm chuyển động theo phương ngang có toạ độ xác định bởi phương trình \(x\left( t \right) = - 0,01{t^4} + 0,12{t^3} + 0,3{t^2} + 0,5\) với \(x\) tính bằng mét, \(t\) tính bằng giây, \(0 \le t \le 6\). Tìm thời điểm mà tốc độ của chất điểm lớn nhất.
Đề bài
Một chất điểm chuyển động theo phương ngang có toạ độ xác định bởi phương trình \(x\left( t \right) = - 0,01{t^4} + 0,12{t^3} + 0,3{t^2} + 0,5\) với \(x\) tính bằng mét, \(t\) tính bằng giây, \(0 \le t \le 6\). Tìm thời điểm mà tốc độ của chất điểm lớn nhất.
Phương pháp giải - Xem chi tiết
Tìm \(v\left( t \right) = x'\left( t \right)\), tìm giá trị lớn nhất của hàm số \(v\left( t \right)\) trên đoạn \(\left[ {0;6} \right]\).
Lời giải chi tiết
Ta có: \(v\left( t \right) = x'\left( t \right) = - 0,04{t^3} + 0,36{t^2} + 0,6t\).
Xét hàm số \(v\left( t \right) = - 0,04{t^3} + 0,36{t^2} + 0,6t\) trên đoạn \(\left[ {0;6} \right]\).
Ta có: \(v'\left( t \right) = - 0,12{t^2} + 0,72t + 0,6\)
\(f'\left( x \right) = 0 \Leftrightarrow x = 3 + \sqrt {14} \) (loại) hoặc \(x = 3 - \sqrt {14} \) (loại).
\(f\left( 0 \right) = 0;f\left( 6 \right) = 7,92\)
Vậy \(\mathop {\max }\limits_{\left[ {0;6} \right]} v\left( t \right) = v\left( 6 \right) = 7,92\).
Vậy tại thời điểm \(t = 6\) giây thì tốc độ của chất điểm lớn nhất.
Bài 6 trang 17 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.
Bài 6 bao gồm một số câu hỏi yêu cầu học sinh tính đạo hàm của các hàm số khác nhau. Các hàm số này có thể là hàm đa thức, hàm phân thức, hàm lượng giác hoặc hàm mũ. Để giải quyết bài tập này, học sinh cần:
Để tính đạo hàm của hàm số này, ta sử dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lũy thừa:
f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)'
f'(x) = 3x^2 + 4x - 5 + 0
f'(x) = 3x^2 + 4x - 5
Để tính đạo hàm của hàm số này, ta sử dụng quy tắc đạo hàm của thương:
g'(x) = [(x^2 + 1)'(x - 1) - (x^2 + 1)(x - 1)'] / (x - 1)^2
g'(x) = [2x(x - 1) - (x^2 + 1)(1)] / (x - 1)^2
g'(x) = (2x^2 - 2x - x^2 - 1) / (x - 1)^2
g'(x) = (x^2 - 2x - 1) / (x - 1)^2
Để tính đạo hàm của hàm số này, ta sử dụng quy tắc đạo hàm của hàm hợp:
h'(x) = cos(2x) * (2x)'
h'(x) = 2cos(2x)
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức về đạo hàm, bạn có thể luyện tập thêm các bài tập sau:
Bài 6 trang 17 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý quan trọng trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài toán đạo hàm và đạt kết quả tốt trong môn Toán 12.