Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 106 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 106 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 106 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 106 sách bài tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Chọn đáp án đúng Một tài xế ô tô công nghệ ở Thành phố Hồ Chí Minh đã thống kê khoảng cách của một số chuyển xe chạy trong địa phận thành phố ở bảng sau: a) Khoảng biến thiên (đơn vị: km) của mẫu số liệu ghép nhóm trên là: A. 50. B. 20. C. 40. D. 30. b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào sau đây? A. 12,89. B. 14,99. C. 19,23. D. 6,24. c) Phương sai của mẫu số liệu ghép nhóm trên là A. 104. B. 21. C. 10,2. D. 441. d) Độ lệch chuẩn của mẫu số

Đề bài

Chọn đáp án đúng

Một tài xế ô tô công nghệ ở Thành phố Hồ Chí Minh đã thống kê khoảng cách của một số chuyển xe chạy trong địa phận thành phố ở bảng sau:

Giải bài 2 trang 106 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Khoảng biến thiên (đơn vị: km) của mẫu số liệu ghép nhóm trên là:

A. 50.

B. 20.

C. 40.

D. 30.

b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào sau đây?

A. 12,89.

B. 14,99.

C. 19,23.

D. 6,24.

c) Phương sai của mẫu số liệu ghép nhóm trên là

A. 104.

B. 21.

C. 10,2.

D. 441.

d) Độ lệch chuẩn của mẫu số liệu ghép nhóm trên gần nhất với với giá trị nào sau đây?

A. 11,9.

B. 21.

C. 9,85.

D. 10,2.

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 106 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)

trong đó:

• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;

• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);

• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);

• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)

‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).

Lời giải chi tiết

a) Khoảng biến thiên của mẫu số liệu trên là: \(R = 50 - 0 = 50\) (km).

Chọn A.

b) Cỡ mẫu: \(n = 28 + 32 + 66 + 20 + 4 = 150\)

Gọi \({x_1};{x_2};...;{x_{150}}\) là mẫu số liệu gốc gồm số cổ động viên đến sân cổ vũ mỗi trận đấu theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{38}} \in \left[ {10;20} \right)\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 10 + \frac{{\frac{{1.150}}{4} - 28}}{{32}}\left( {20 - 10} \right) = \frac{{415}}{{32}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{113}} \in \left[ {20;30} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 20 + \frac{{\frac{{3.150}}{4} - \left( {28 + 32} \right)}}{{66}}\left( {30 - 20} \right) = \frac{{615}}{{22}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

\(\Delta Q = {Q_3} - {Q_1} = \frac{{615}}{{22}} - \frac{{415}}{{32}} = \frac{{5275}}{{352}} \approx 14,99\) (km).

Chọn B.

c) Ta có bảng sau:

Giải bài 2 trang 106 sách bài tập toán 12 - Chân trời sáng tạo 3

Cỡ mẫu \(n = 150\)

Số trung bình của mẫu số liệu ghép nhóm là:

\(\overline x = \frac{{28.5 + 32.15 + 66.25 + 20.35 + 4.45}}{{150}} = 21\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\({S^2} = \frac{1}{{150}}\left( {{{28.5}^2} + {{32.15}^2} + {{66.25}^2} + {{20.35}^2} + {{4.45}^2}} \right) - {21^2} = 104\)

Chọn A.

d) Độ lệch chuẩn của mẫu số liệu ghép nhóm đó là: \(S = \sqrt {104} = 2\sqrt {26} \approx 10,2\).

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2 trang 106 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2 trang 106 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 2 trang 106 sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích hàm số, tìm cực trị, và khảo sát sự biến thiên của hàm số. Việc nắm vững các khái niệm và kỹ năng liên quan đến đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 2 trang 106, học sinh cần xác định hàm số cần khảo sát, các điểm không xác định, và các khoảng đơn điệu của hàm số. Ngoài ra, cần chú ý đến các điều kiện ràng buộc của bài toán, nếu có.

Phương pháp giải bài 2 trang 106

Để giải bài 2 trang 106 sách bài tập Toán 12 - Chân trời sáng tạo, học sinh có thể áp dụng các phương pháp sau:

  1. Tính đạo hàm cấp một (f'(x)) của hàm số.
  2. Tìm các điểm dừng của hàm số (f'(x) = 0).
  3. Lập bảng xét dấu f'(x) để xác định các khoảng đơn điệu của hàm số.
  4. Tính đạo hàm cấp hai (f''(x)) của hàm số.
  5. Tìm các điểm uốn của hàm số (f''(x) = 0).
  6. Khảo sát sự biến thiên của hàm số dựa trên các kết quả đã tìm được.

Lời giải chi tiết bài 2 trang 106

Bài 2: Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Bước 1: Tập xác định

Hàm số y = x3 - 3x2 + 2 xác định trên tập số thực R.

Bước 2: Tính đạo hàm cấp một

f'(x) = 3x2 - 6x

Bước 3: Tìm điểm dừng

f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

Vậy, x1 = 0 và x2 = 2 là các điểm dừng của hàm số.

Bước 4: Lập bảng xét dấu f'(x)

x-∞02+∞
f'(x)+-+
f(x)NBĐCT

Chú thích: NB - Nghịch biến, Đ - Đồng biến, CT - Cực tiểu

Bước 5: Tính đạo hàm cấp hai

f''(x) = 6x - 6

Bước 6: Tìm điểm uốn

f''(x) = 0 ⇔ 6x - 6 = 0 ⇔ x = 1

Vậy, x = 1 là điểm uốn của hàm số.

Bước 7: Khảo sát sự biến thiên và vẽ đồ thị

Dựa trên các kết quả đã tìm được, ta có thể kết luận:

  • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
  • Hàm số nghịch biến trên khoảng (0; 2).
  • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
  • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
  • Hàm số có điểm uốn tại x = 1, giá trị tại điểm uốn là f(1) = 0.

Đồ thị của hàm số y = x3 - 3x2 + 2 có dạng đường cong đi qua các điểm cực trị và điểm uốn, đồng thời thể hiện sự đồng biến và nghịch biến của hàm số trên các khoảng khác nhau.

Lưu ý khi giải bài tập về đạo hàm

  • Luôn kiểm tra tập xác định của hàm số trước khi tính đạo hàm.
  • Chú ý đến các điểm không xác định của hàm số.
  • Sử dụng bảng xét dấu đạo hàm để xác định các khoảng đơn điệu của hàm số một cách chính xác.
  • Kiểm tra lại kết quả bằng cách vẽ đồ thị của hàm số.

Kết luận

Bài 2 trang 106 sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi đối mặt với các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 12