Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 86 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 86 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi (A) là biến cố “Lá bài được chọn là lá K” và (B) là biến cố “Lá bài được chọn là chất cơ”. Tính (Pleft( A right),Pleft( {A|B} right)) và (Pleft( {A|overline B } right)).

Đề bài

Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi \(A\) là biến cố “Lá bài được chọn là lá K” và \(B\) là biến cố “Lá bài được chọn là chất cơ”.

Tính \(P\left( A \right),P\left( {A|B} \right)\) và \(P\left( {A|\overline B } \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).

Lời giải chi tiết

\(A\) là biến cố “Lá bài được chọn là lá K” và \(B\) là biến cố “Lá bài được chọn là chất cơ”.

Xác suất lá bài được chọn là lá K là \(P\left( A \right) = \frac{4}{{52}} = \frac{1}{{13}}\).

Xác suất lá bài được chọn là chất cơ là \(P\left( B \right) = \frac{{13}}{{52}} = \frac{1}{4}\).

Xác suất lá bài được chọn là quân K cơ là \(P\left( {AB} \right) = \frac{1}{{52}}\).

Theo công thức tính xác suất có điều kiện, xác suất lá bài được chọn là lá K, biết rằng lá đó có chất cơ là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{{52}}:\frac{1}{4} = \frac{1}{{13}}\).

Xác suất lá bài được chọn là lá K, nhưng không phải chất cơ là \(P\left( {A\overline B } \right) = \frac{3}{{52}}\).

Xác suất lá bài được chọn không phải chất cơ là \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - \frac{1}{4} = \frac{3}{4}\).

Theo công thức tính xác suất có điều kiện, xác suất lá bài được chọn là lá K, biết rằng lá đó không phải chất cơ là: \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{3}{{52}}:\frac{3}{4} = \frac{1}{{13}}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1 trang 86 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 1 trang 86 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài 1 trang 86 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc để giải quyết các bài toán liên quan đến tốc độ thay đổi.

Lời giải chi tiết bài 1 trang 86 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giúp học sinh hiểu rõ hơn về cách giải bài 1 trang 86, chúng ta sẽ đi vào phân tích từng câu hỏi cụ thể. Dưới đây là lời giải chi tiết cho từng phần của bài tập:

Câu a: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1

Để tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1, ta áp dụng quy tắc tính đạo hàm của tổng và quy tắc tính đạo hàm của lũy thừa:

f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)'

f'(x) = 3x^2 + 4x - 5 + 0

f'(x) = 3x^2 + 4x - 5

Câu b: Tính đạo hàm của hàm số g(x) = sin(2x)

Để tính đạo hàm của hàm số g(x) = sin(2x), ta áp dụng quy tắc hàm hợp:

g'(x) = (sin(2x))' = cos(2x) * (2x)' = cos(2x) * 2 = 2cos(2x)

Câu c: Giải phương trình f'(x) = 0 với f(x) = x^2 - 4x + 3

Đầu tiên, ta tính đạo hàm của f(x):

f'(x) = (x^2 - 4x + 3)' = 2x - 4

Sau đó, ta giải phương trình f'(x) = 0:

2x - 4 = 0

2x = 4

x = 2

Mẹo học tốt môn Toán 12

Để học tốt môn Toán 12, đặc biệt là phần đạo hàm, bạn nên:

  • Nắm vững lý thuyết: Hiểu rõ các định nghĩa, định lý, và quy tắc tính đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng tài liệu tham khảo: Tham khảo các sách giáo khoa, sách bài tập, và các trang web học toán uy tín.
  • Hỏi thầy cô giáo: Nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô giáo để được hướng dẫn và giải đáp.

Kết luận

Bài 1 trang 86 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo học tập trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12