Bài 2 trang 76 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh tính đạo hàm, tìm cực trị, và vẽ đồ thị hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình bình hành \(OABD\) có \(\overrightarrow {OA} = \left( { - 1;1;0} \right)\) và \(\overrightarrow {OB} = \left( {1;1;0} \right)\) với \(O\) là gốc toạ độ. Tìm toạ độ của điểm \(D\).
Đề bài
Cho hình bình hành \(OABD\) có \(\overrightarrow {OA} = \left( { - 1;1;0} \right)\) và \(\overrightarrow {OB} = \left( {1;1;0} \right)\) với \(O\) là gốc toạ độ. Tìm toạ độ của điểm \(D\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ: \(\overrightarrow {OM} = \left( {a;b;c} \right) \Leftrightarrow M\left( {a;b;c} \right)\).
‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
Lời giải chi tiết
Ta có \(\overrightarrow {OB} = \left( {1;1;0} \right) \Leftrightarrow B\left( {1;1;0} \right)\)
Giả sử \(D\left( {{x_D};{y_D};{z_D}} \right)\). Ta có
\(\overrightarrow {DB} = \left( {1 - {x_D};1 - {y_D}; - {z_D}} \right)\).
\(OABD\) là hình bình hành nên \(\overrightarrow {OA} = \overrightarrow {DB} \).
\( \Leftrightarrow \left\{ \begin{array}{l}1 - {x_D} = - 1\\1 - {y_D} = 1\\ - {z_D} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 2\\{y_D} = 0\\{z_D} = 0\end{array} \right.\). Vậy \(D\left( {2;0;0} \right)\).
Bài 2 trang 76 sách bài tập Toán 12 Chân trời sáng tạo thường xoay quanh việc khảo sát hàm số bậc ba. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, cực trị, và điểm uốn của hàm số.
(Nội dung đề bài sẽ được chèn vào đây. Ví dụ: Khảo sát hàm số y = x3 - 3x2 + 2)
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích rõ ràng, và kết luận.)
Ví dụ, với hàm số y = x3 - 3x2 + 2:
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo hoặc các nguồn tài liệu học tập khác.
Việc giải bài 2 trang 76 sách bài tập Toán 12 Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm. Bằng cách làm theo các bước hướng dẫn chi tiết và luyện tập thường xuyên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.