Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 7 trang 80 sách bài tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Cho hai biến cố \(A\) và \(B\) thoả mãn \(P\left( A \right) = P\left( B \right) = 0,8\). Chứng minh rằng \(P\left( {A|B} \right) \ge 0,75\).
Đề bài
Cho hai biến cố \(A\) và \(B\) thoả mãn \(P\left( A \right) = P\left( B \right) = 0,8\). Chứng minh rằng \(P\left( {A|B} \right) \ge 0,75\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng quy tắc cộng xác suất: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Theo quy tắc cộng xác suất ta có: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Do đó \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = 0,8 + 0,8 - P\left( {A \cup B} \right) = 1,6 - P\left( {A \cup B} \right)\).
Do \(P\left( {A \cup B} \right) \le 1\) nên \(1,6 - P\left( {A \cup B} \right) \ge 0,6\).
Theo công thức tính xác suất có điều kiện ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} \ge \frac{{0,6}}{{0,8}} = 0,75\).
Vậy \(P\left( {A|B} \right) \ge 0,75\).
Bài tập 7 trang 80 sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12 tập 2, tập trung vào chủ đề về Ứng dụng đạo hàm để khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm, điểm cực trị, khoảng đơn điệu để phân tích và giải quyết các bài toán thực tế.
Bài tập 7 thường xoay quanh việc khảo sát hàm số bậc ba hoặc bậc bốn, xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Để giải quyết bài tập này, học sinh cần thực hiện các bước sau:
Giả sử hàm số cần khảo sát là: y = x3 - 3x2 + 2
y' = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
y'' = 6x - 6
6x - 6 = 0 ⇔ x = 1
Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2. Hàm số có điểm uốn tại x = 1.
Ngoài việc khảo sát hàm số, bài tập 7 trang 80 còn có thể xuất hiện các dạng bài tập sau:
Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:
Bài tập 7 trang 80 sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về ứng dụng đạo hàm để khảo sát hàm số. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này.