Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các bạn học sinh.

Cho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.

Đề bài

Cho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng công thức tính diện tích hình thang để tính diện tích \(S\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(S\left( x \right)\).

Lời giải chi tiết

Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo 2

Xét hình thang cân \(ABCD\) có đáy nhỏ \(AB\), gọi \(H,K\) lần lượt là chân đường cao kẻ từ \(A\) và \(B\) xuống \(CD\).

Ta có:

\(C{\rm{D}} = 5 + 2{\rm{x}},AH = \sqrt {A{{\rm{D}}^2} - D{H^2}} = \sqrt {{5^2} - {x^2}} = \sqrt {25 - {x^2}} \)

Diện tích hình thang là:

\(S = \frac{1}{2}\left( {AB + C{\rm{D}}} \right).AH = \frac{1}{2}\left( {5 + 5 + 2{\rm{x}}} \right).\sqrt {25 - {x^2}} = \left( {5 + {\rm{x}}} \right).\sqrt {25 - {x^2}} \)

Do \(DH < AD\) nên \({\rm{x}} < 5\).

Xét hàm số \(S\left( x \right) = \left( {5 + {\rm{x}}} \right).\sqrt {25 - {x^2}} \) trên nửa khoảng \(\left[ {0;5} \right)\).

Ta có:

\(S'\left( x \right) = {\left( {5 + {\rm{x}}} \right)^\prime }.\sqrt {25 - {x^2}} + \left( {5 + {\rm{x}}} \right).{\left( {\sqrt {25 - {x^2}} } \right)^\prime } = \sqrt {25 - {x^2}} + \left( {5 + {\rm{x}}} \right).\frac{{ - {\rm{x}}}}{{\sqrt {25 - {x^2}} }} = \frac{{ - 2{{\rm{x}}^2} - 5x + 25}}{{\sqrt {25 - {x^2}} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\) hoặc \(x = - 5\) (loại)

Bảng biến thiên của hàm số trên nửa khoảng \(\left[ {0;5} \right)\):

Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo 3

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{\left[ {0;5} \right)} S\left( x \right) = S\left( {\frac{5}{2}} \right) = \frac{{75\sqrt 3 }}{4}\).

Vậy hình thang cân \(ABCD\) có diện tích lớn nhất bằng \(\frac{{75\sqrt 3 }}{4}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 10 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit.
  • Tìm cực trị của hàm số: Yêu cầu tìm điểm cực đại, điểm cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Khảo sát hàm số: Yêu cầu xác định khoảng đồng biến, khoảng nghịch biến, điểm cực trị, giới hạn vô cùng và vẽ đồ thị hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trong một khoảng cho trước, hoặc để giải quyết các bài toán tối ưu hóa.

Phương pháp giải bài tập

Để giải quyết bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo một cách hiệu quả, học sinh cần nắm vững các phương pháp sau:

  1. Nắm vững các quy tắc tính đạo hàm: Học sinh cần thuộc lòng và hiểu rõ các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như quy tắc tính đạo hàm của hàm hợp, hàm lượng giác, hàm mũ, hàm logarit.
  2. Sử dụng thành thạo các phương pháp giải phương trình: Để tìm cực trị của hàm số, học sinh cần giải phương trình đạo hàm bằng 0. Do đó, học sinh cần thành thạo các phương pháp giải phương trình bậc nhất, bậc hai, phương trình lượng giác, phương trình mũ, phương trình logarit.
  3. Xét dấu đạo hàm: Để xác định khoảng đồng biến, khoảng nghịch biến của hàm số, học sinh cần xét dấu đạo hàm trên các khoảng xác định của hàm số.
  4. Vẽ đồ thị hàm số: Để vẽ đồ thị hàm số, học sinh cần xác định các điểm đặc biệt của hàm số, như điểm cực trị, điểm uốn, giao điểm với các trục tọa độ.

Ví dụ minh họa

Ví dụ: Tìm cực trị của hàm số y = x3 - 3x2 + 2.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x.
  2. Giải phương trình y' = 0: 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
  3. Xét dấu đạo hàm:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
  4. Kết luận: Hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2.

Lưu ý khi giải bài tập

Khi giải bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo, học sinh cần lưu ý những điều sau:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu của bài tập.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Rèn luyện thường xuyên để nâng cao kỹ năng giải toán.

Tài liệu tham khảo

Học sinh có thể tham khảo thêm các tài liệu sau để học tập và rèn luyện:

  • Sách giáo khoa Toán 12 - Chân trời sáng tạo.
  • Sách bài tập Toán 12 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín.

Kết luận

Bài 10 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các bạn học sinh sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12