Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 25 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn dễ dàng theo dõi và hiểu bài.
Tính: a) (intlimits_1^2 {frac{{{x^4} + {x^3} + {x^2} + x + 1}}{{{x^2}}}dx} ); b) (intlimits_1^2 {frac{{x{e^x} + 1}}{x}dx} ); c) (intlimits_0^1 {frac{{{8^x} + 1}}{{{2^x} + 1}}dx} ); d) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {frac{{1 + {{sin }^2}x}}{{1 - {{cos }^2}x}}dx} ).
Đề bài
Tính:
a) \(\int\limits_1^2 {\frac{{{x^4} + {x^3} + {x^2} + x + 1}}{{{x^2}}}dx} \);
b) \(\int\limits_1^2 {\frac{{x{e^x} + 1}}{x}dx} \);
c) \(\int\limits_0^1 {\frac{{{8^x} + 1}}{{{2^x} + 1}}dx} \);
d) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{1 + {{\sin }^2}x}}{{1 - {{\cos }^2}x}}dx} \).
Phương pháp giải - Xem chi tiết
‒ Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).
• \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
• \(\int {\cos xdx} = \sin x + C\).
Lời giải chi tiết
a) \(\int\limits_1^2 {\frac{{{x^4} + {x^3} + {x^2} + x + 1}}{{{x^2}}}dx} = \int\limits_1^2 {\left( {{x^2} + x + 1 + \frac{1}{x} + {x^{ - 2}}} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x + \ln \left| x \right| - \frac{1}{x}} \right)} \right|_1^2 = \ln 2 + \frac{{16}}{3}\).
b) \(\int\limits_1^2 {\frac{{x{e^x} + 1}}{x}dx} = \int\limits_1^2 {\left( {{e^x} + \frac{1}{x}} \right)dx} = \left. {\left( {{e^x} + \ln \left| x \right|} \right)} \right|_1^2 = {e^2} - e + \ln 2\).
c)
\(\begin{array}{l}\int\limits_0^1 {\frac{{{8^x} + 1}}{{{2^x} + 1}}dx} = \int\limits_0^1 {\frac{{{2^{3x}} + 1}}{{{2^x} + 1}}dx} = \int\limits_0^1 {\frac{{\left( {{2^x} + 1} \right)\left( {{2^{2x}} - {2^x} + 1} \right)}}{{{2^x} + 1}}dx} = \int\limits_0^1 {\left( {{4^x} - {2^x} + 1} \right)dx} \\ = \left. {\left( {\frac{{{4^x}}}{{\ln 4}} - \frac{{{2^x}}}{{\ln 2}} + x} \right)} \right|_0^1 = 1 + \frac{1}{{2\ln 2}}\end{array}\)
d) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{1 + {{\sin }^2}x}}{{1 - {{\cos }^2}x}}dx} = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{1 + {{\sin }^2}x}}{{{{\sin }^2}x}}dx} = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{{{{\sin }^2}x}} + 1} \right)dx} = \left. {\left( { - \cot x + x} \right)} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} = 1 + \frac{\pi }{4}\).
Bài 3 trang 25 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài tập đạo hàm hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số y = 3x2 - 4x + 2.
Giải:
y' = 6x - 4
Ví dụ 2: Tính đạo hàm của hàm số y = sin(x).
Giải:
y' = cos(x)
Khi giải bài tập đạo hàm, bạn cần lưu ý:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 3 trang 25 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự trong chương trình học. Chúc bạn học tốt!
Hàm số | Đạo hàm |
---|---|
y = xn | y' = nxn-1 |
y = sin(x) | y' = cos(x) |
y = cos(x) | y' = -sin(x) |
Bảng tổng hợp các đạo hàm cơ bản |