Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 7 trang 55 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 7 trang 55 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn dễ dàng theo dõi và hiểu bài.

Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\). a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\). b) Tính

Đề bài

Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\).

Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\).

b) Tính góc tạo bởi các sợi dây cáp \(MA,NA\) với mặt phẳng sườn đồi.

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

‒ Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

a) Ta có: \(MA = \left| {\overrightarrow {MA} } \right| = \sqrt {{{\left( {0 - 4} \right)}^2} + {{\left( {0 - \left( { - 4} \right)} \right)}^2} + {{\left( {6 - 3} \right)}^2}} = \sqrt {34} \approx 5,8\left( m \right)\).

\(NA = \left| {\overrightarrow {NA} } \right| = \sqrt {{{\left( {0 - \left( { - 5} \right)} \right)}^2} + {{\left( {0 - \left( { - 2} \right)} \right)}^2} + {{\left( {6 - 2} \right)}^2}} = \sqrt {45} \approx 6,7\left( m \right)\).

b) Ta có: \(\overrightarrow {MA} = \left( { - 3;4;3} \right),\overrightarrow {NA} = \left( {5;2;4} \right),\overrightarrow {OM} = \left( {3; - 4;3} \right),\overrightarrow {ON} = \left( { - 5; - 2;2} \right)\)

\(\left[ {\overrightarrow {OM} ,\overrightarrow {ON} } \right] = \left( { - 2; - 21; - 26} \right)\).

Do đó \(\left( {OMN} \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( { - 2; - 21; - 26} \right)\).

Ta có:

\(\sin \left( {MA,\left( {OMN} \right)} \right) = \left| {\cos \left( {\overrightarrow {MA} ,\overrightarrow n } \right)} \right| = \frac{{\left| {\left( { - 3} \right).\left( { - 2} \right) + 4.\left( { - 21} \right) + 3.\left( { - 26} \right)} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {4^2} + {3^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }} = \frac{{156}}{{\sqrt {38114} }}\)

Vậy \(\left( {MA,\left( {OMN} \right)} \right) \approx {53^ \circ }\).

\(\sin \left( {NA,\left( {OMN} \right)} \right) = \left| {\cos \left( {\overrightarrow {NA} ,\overrightarrow n } \right)} \right| = \frac{{\left| {5.\left( { - 2} \right) + 2.\left( { - 21} \right) + 4.\left( { - 26} \right)} \right|}}{{\sqrt {{5^2} + {2^2} + {4^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }} = \frac{{156}}{{\sqrt {50445} }}\)

Vậy \(\left( {NA,\left( {OMN} \right)} \right) \approx {44^ \circ }\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 7 trang 55 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 7 trang 55 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung chi tiết bài 7 trang 55

Bài 7 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước.
  2. Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  3. Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để giải các phương trình liên quan đến hàm số.
  4. Khảo sát hàm số: Sử dụng đạo hàm để khảo sát tính đơn điệu, cực trị của hàm số.

Hướng dẫn giải chi tiết từng phần của bài 7

Phần 1: Tính đạo hàm của hàm số y = x3 - 3x2 + 2x - 1

Để tính đạo hàm của hàm số này, ta sử dụng quy tắc đạo hàm của hàm đa thức:

(xn)' = nxn-1

Áp dụng quy tắc này, ta có:

y' = 3x2 - 6x + 2

Phần 2: Tìm đạo hàm cấp hai của hàm số y = sin(2x)

Để tìm đạo hàm cấp hai, ta cần tính đạo hàm bậc nhất trước, sau đó tính đạo hàm của đạo hàm bậc nhất:

y' = 2cos(2x)

y'' = -4sin(2x)

Phần 3: Giải phương trình 2x3 - 3x2 + 1 = 0 bằng phương pháp đạo hàm

Ta xét hàm số f(x) = 2x3 - 3x2 + 1. Tính đạo hàm f'(x) = 6x2 - 6x = 6x(x-1). Tìm các điểm cực trị bằng cách giải phương trình f'(x) = 0, ta được x = 0 và x = 1. Tính giá trị của hàm số tại các điểm cực trị và các điểm biên để xác định nghiệm của phương trình.

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các quy tắc tính đạo hàm: Đây là nền tảng quan trọng để giải quyết các bài toán.
  • Sử dụng đúng công thức: Cẩn thận khi áp dụng các công thức đạo hàm, đặc biệt là đối với các hàm số phức tạp.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.

Ví dụ minh họa thêm

Ví dụ 1: Tính đạo hàm của hàm số y = ex + ln(x).

Giải: y' = ex + 1/x

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số y = cos(x).

Giải: y' = -sin(x), y'' = -cos(x)

Tài liệu tham khảo hữu ích

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín

Kết luận

Bài 7 trang 55 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12