Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 7 trang 55 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn dễ dàng theo dõi và hiểu bài.
Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\). a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\). b) Tính
Đề bài
Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\).
a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\).
b) Tính góc tạo bởi các sợi dây cáp \(MA,NA\) với mặt phẳng sườn đồi.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):
\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
‒ Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:
\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
Lời giải chi tiết
a) Ta có: \(MA = \left| {\overrightarrow {MA} } \right| = \sqrt {{{\left( {0 - 4} \right)}^2} + {{\left( {0 - \left( { - 4} \right)} \right)}^2} + {{\left( {6 - 3} \right)}^2}} = \sqrt {34} \approx 5,8\left( m \right)\).
\(NA = \left| {\overrightarrow {NA} } \right| = \sqrt {{{\left( {0 - \left( { - 5} \right)} \right)}^2} + {{\left( {0 - \left( { - 2} \right)} \right)}^2} + {{\left( {6 - 2} \right)}^2}} = \sqrt {45} \approx 6,7\left( m \right)\).
b) Ta có: \(\overrightarrow {MA} = \left( { - 3;4;3} \right),\overrightarrow {NA} = \left( {5;2;4} \right),\overrightarrow {OM} = \left( {3; - 4;3} \right),\overrightarrow {ON} = \left( { - 5; - 2;2} \right)\)
\(\left[ {\overrightarrow {OM} ,\overrightarrow {ON} } \right] = \left( { - 2; - 21; - 26} \right)\).
Do đó \(\left( {OMN} \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( { - 2; - 21; - 26} \right)\).
Ta có:
\(\sin \left( {MA,\left( {OMN} \right)} \right) = \left| {\cos \left( {\overrightarrow {MA} ,\overrightarrow n } \right)} \right| = \frac{{\left| {\left( { - 3} \right).\left( { - 2} \right) + 4.\left( { - 21} \right) + 3.\left( { - 26} \right)} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {4^2} + {3^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }} = \frac{{156}}{{\sqrt {38114} }}\)
Vậy \(\left( {MA,\left( {OMN} \right)} \right) \approx {53^ \circ }\).
\(\sin \left( {NA,\left( {OMN} \right)} \right) = \left| {\cos \left( {\overrightarrow {NA} ,\overrightarrow n } \right)} \right| = \frac{{\left| {5.\left( { - 2} \right) + 2.\left( { - 21} \right) + 4.\left( { - 26} \right)} \right|}}{{\sqrt {{5^2} + {2^2} + {4^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }} = \frac{{156}}{{\sqrt {50445} }}\)
Vậy \(\left( {NA,\left( {OMN} \right)} \right) \approx {44^ \circ }\).
Bài 7 trang 55 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 7 thường bao gồm các dạng bài tập sau:
Để tính đạo hàm của hàm số này, ta sử dụng quy tắc đạo hàm của hàm đa thức:
(xn)' = nxn-1
Áp dụng quy tắc này, ta có:
y' = 3x2 - 6x + 2
Để tìm đạo hàm cấp hai, ta cần tính đạo hàm bậc nhất trước, sau đó tính đạo hàm của đạo hàm bậc nhất:
y' = 2cos(2x)
y'' = -4sin(2x)
Ta xét hàm số f(x) = 2x3 - 3x2 + 1. Tính đạo hàm f'(x) = 6x2 - 6x = 6x(x-1). Tìm các điểm cực trị bằng cách giải phương trình f'(x) = 0, ta được x = 0 và x = 1. Tính giá trị của hàm số tại các điểm cực trị và các điểm biên để xác định nghiệm của phương trình.
Ví dụ 1: Tính đạo hàm của hàm số y = ex + ln(x).
Giải: y' = ex + 1/x
Ví dụ 2: Tìm đạo hàm cấp hai của hàm số y = cos(x).
Giải: y' = -sin(x), y'' = -cos(x)
Bài 7 trang 55 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự. Chúc bạn học tập tốt!