Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải, đáp án chính xác và giải thích rõ ràng từng bước để giúp học sinh hiểu sâu kiến thức.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Tính diện tích hình phẳng giới hạn bởi a) Đồ thị của hàm số (y = 3xleft( {2 - x} right)), trục hoành và hai đường thẳng (x = - 1,x = 1). b) Đồ thị của hàm số (y = frac{{4 - x}}{x}), trục hoành và hai đường thẳng (x = 1,x = 2). c) Đồ thị của hàm số (y = {x^3} - {x^2}), trục hoành và hai đường thẳng (x = 0,x = 2).
Đề bài
Tính diện tích hình phẳng giới hạn bởi
a) Đồ thị của hàm số \(y = 3x\left( {2 - x} \right)\), trục hoành và hai đường thẳng \(x = - 1,x = 1\).
b) Đồ thị của hàm số \(y = \frac{{4 - x}}{x}\), trục hoành và hai đường thẳng \(x = 1,x = 2\).
c) Đồ thị của hàm số \(y = {x^3} - {x^2}\), trục hoành và hai đường thẳng \(x = 0,x = 2\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
a) \(S = \int\limits_{ - 1}^1 {\left| {3x\left( {2 - x} \right)} \right|dx} = \int\limits_{ - 1}^1 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} \)
\(3x\left( {2 - x} \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\) (loại)
\(\begin{array}{l}S = \int\limits_{ - 1}^1 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} = \int\limits_{ - 1}^0 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} + \int\limits_0^1 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} = \left| {\int\limits_{ - 1}^0 {\left( {6{\rm{x}} - 3{{\rm{x}}^2}} \right)dx} } \right| + \left| {\int\limits_{ - 1}^0 {\left( {6{\rm{x}} - 3{{\rm{x}}^2}} \right)dx} } \right|\\ = \left| {\left. {\left( {3{{\rm{x}}^2} - {{\rm{x}}^3}} \right)} \right|_{ - 1}^2} \right| + \left| {\left. {\left( {3{{\rm{x}}^2} - {{\rm{x}}^3}} \right)} \right|_0^1} \right| = 4 + 2 = 6\end{array}\)
b) Vì \(\frac{{4 - x}}{x} > 0,\forall x \in \left[ {1;2} \right]\) nên ta có:
\(S = \int\limits_1^2 {\left| {\frac{{4 - x}}{x}} \right|dx} = \int\limits_1^2 {\frac{{4 - x}}{x}dx} = \int\limits_1^2 {\left( {\frac{4}{x} - 1} \right)dx} = \left. {\left( {4\ln {\rm{x}} - x} \right)} \right|_1^2 = 4\ln 2 - 1\).
c) \(S = \int\limits_0^2 {\left| {{x^3} - {x^2}} \right|dx} \)
\({x^3} - {x^2} = 0 \Leftrightarrow x = 0\) hoặc \(x = 1\)
\(\begin{array}{l}S = \int\limits_0^2 {\left| {{x^3} - {x^2}} \right|dx} = \int\limits_0^1 {\left| {{x^3} - {x^2}} \right|dx} + \int\limits_1^2 {\left| {{x^3} - {x^2}} \right|dx} = \left| {\int\limits_0^1 {\left( {{x^3} - {x^2}} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^3} - {x^2}} \right)dx} } \right|\\ = \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^3}}}{3}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^3}}}{3}} \right)} \right|_1^2} \right| = \frac{1}{{12}} + \frac{{17}}{{12}} = \frac{3}{2}\end{array}\)
Bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để tính đạo hàm của các hàm số đơn giản. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.
Bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài tập đạo hàm hiệu quả, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo:
Áp dụng quy tắc đạo hàm của hàm đa thức, ta có:
f'(x) = 6x + 2
Áp dụng quy tắc đạo hàm của hàm lượng giác, ta có:
g'(x) = cos(x) - sin(x)
Áp dụng quy tắc đạo hàm của hàm mũ và logarit, ta có:
h'(x) = e^x + 1/x
Áp dụng quy tắc đạo hàm của hàm hợp, ta có:
k'(x) = 2(x^2 + 1) * 2x = 4x(x^2 + 1)
Trong quá trình giải bài tập đạo hàm, học sinh cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:
Bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, học sinh sẽ tự tin hơn khi giải các bài tập đạo hàm khác.