Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 20 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 20 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 20 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải, đáp án chính xác và giải thích rõ ràng từng bước để giúp học sinh hiểu sâu kiến thức.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Tính diện tích hình phẳng giới hạn bởi a) Đồ thị của hàm số (y = 3xleft( {2 - x} right)), trục hoành và hai đường thẳng (x = - 1,x = 1). b) Đồ thị của hàm số (y = frac{{4 - x}}{x}), trục hoành và hai đường thẳng (x = 1,x = 2). c) Đồ thị của hàm số (y = {x^3} - {x^2}), trục hoành và hai đường thẳng (x = 0,x = 2).

Đề bài

Tính diện tích hình phẳng giới hạn bởi

a) Đồ thị của hàm số \(y = 3x\left( {2 - x} \right)\), trục hoành và hai đường thẳng \(x = - 1,x = 1\).

b) Đồ thị của hàm số \(y = \frac{{4 - x}}{x}\), trục hoành và hai đường thẳng \(x = 1,x = 2\).

c) Đồ thị của hàm số \(y = {x^3} - {x^2}\), trục hoành và hai đường thẳng \(x = 0,x = 2\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 20 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

a) \(S = \int\limits_{ - 1}^1 {\left| {3x\left( {2 - x} \right)} \right|dx} = \int\limits_{ - 1}^1 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} \)

\(3x\left( {2 - x} \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\) (loại)

\(\begin{array}{l}S = \int\limits_{ - 1}^1 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} = \int\limits_{ - 1}^0 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} + \int\limits_0^1 {\left| {6{\rm{x}} - 3{{\rm{x}}^2}} \right|dx} = \left| {\int\limits_{ - 1}^0 {\left( {6{\rm{x}} - 3{{\rm{x}}^2}} \right)dx} } \right| + \left| {\int\limits_{ - 1}^0 {\left( {6{\rm{x}} - 3{{\rm{x}}^2}} \right)dx} } \right|\\ = \left| {\left. {\left( {3{{\rm{x}}^2} - {{\rm{x}}^3}} \right)} \right|_{ - 1}^2} \right| + \left| {\left. {\left( {3{{\rm{x}}^2} - {{\rm{x}}^3}} \right)} \right|_0^1} \right| = 4 + 2 = 6\end{array}\)

b) Vì \(\frac{{4 - x}}{x} > 0,\forall x \in \left[ {1;2} \right]\) nên ta có:

\(S = \int\limits_1^2 {\left| {\frac{{4 - x}}{x}} \right|dx} = \int\limits_1^2 {\frac{{4 - x}}{x}dx} = \int\limits_1^2 {\left( {\frac{4}{x} - 1} \right)dx} = \left. {\left( {4\ln {\rm{x}} - x} \right)} \right|_1^2 = 4\ln 2 - 1\).

c) \(S = \int\limits_0^2 {\left| {{x^3} - {x^2}} \right|dx} \)

\({x^3} - {x^2} = 0 \Leftrightarrow x = 0\) hoặc \(x = 1\)

\(\begin{array}{l}S = \int\limits_0^2 {\left| {{x^3} - {x^2}} \right|dx} = \int\limits_0^1 {\left| {{x^3} - {x^2}} \right|dx} + \int\limits_1^2 {\left| {{x^3} - {x^2}} \right|dx} = \left| {\int\limits_0^1 {\left( {{x^3} - {x^2}} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^3} - {x^2}} \right)dx} } \right|\\ = \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^3}}}{3}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^3}}}{3}} \right)} \right|_1^2} \right| = \frac{1}{{12}} + \frac{{17}}{{12}} = \frac{3}{2}\end{array}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1 trang 20 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1 trang 20 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để tính đạo hàm của các hàm số đơn giản. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.

Nội dung bài tập

Bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số đa thức.
  • Tính đạo hàm của hàm số lượng giác.
  • Tính đạo hàm của hàm số mũ và logarit.
  • Áp dụng quy tắc đạo hàm của hàm hợp.

Phương pháp giải bài tập

Để giải bài tập đạo hàm hiệu quả, học sinh cần:

  1. Nắm vững các công thức đạo hàm cơ bản.
  2. Hiểu rõ các quy tắc đạo hàm (quy tắc cộng, trừ, nhân, chia, hàm hợp).
  3. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  4. Kiểm tra lại kết quả sau khi tính toán.

Lời giải chi tiết bài 1 trang 20

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo:

Câu a: Tính đạo hàm của hàm số f(x) = 3x^2 + 2x - 1

Áp dụng quy tắc đạo hàm của hàm đa thức, ta có:

f'(x) = 6x + 2

Câu b: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)

Áp dụng quy tắc đạo hàm của hàm lượng giác, ta có:

g'(x) = cos(x) - sin(x)

Câu c: Tính đạo hàm của hàm số h(x) = e^x + ln(x)

Áp dụng quy tắc đạo hàm của hàm mũ và logarit, ta có:

h'(x) = e^x + 1/x

Câu d: Tính đạo hàm của hàm số k(x) = (x^2 + 1)^2

Áp dụng quy tắc đạo hàm của hàm hợp, ta có:

k'(x) = 2(x^2 + 1) * 2x = 4x(x^2 + 1)

Lưu ý khi giải bài tập

Trong quá trình giải bài tập đạo hàm, học sinh cần lưu ý một số điểm sau:

  • Đảm bảo nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng đúng quy tắc đạo hàm cho từng loại hàm số.
  • Kiểm tra lại kết quả để tránh sai sót.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tìm cực trị của hàm số.
  • Khảo sát hàm số.
  • Tính tốc độ thay đổi của một đại lượng.
  • Giải các bài toán tối ưu hóa.

Tài liệu tham khảo

Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín (ví dụ: giaitoan.edu.vn).
  • Các video bài giảng Toán 12 trên YouTube.

Kết luận

Bài 1 trang 20 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, học sinh sẽ tự tin hơn khi giải các bài tập đạo hàm khác.

Tài liệu, đề thi và đáp án Toán 12