Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 103 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 103 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 103 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 103 sách bài tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Thầy giáo cho các bạn học sinh lớp 8 vận dụng khái niệm tam giác đồng dạng để thực hành đo chiều cao của cột cờ. Kết quả đo của các bạn trong lớp được biểu diễn ở bảng sau: Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).

Đề bài

Thầy giáo cho các bạn học sinh lớp 8 vận dụng khái niệm tam giác đồng dạng để thực hành đo chiều cao của cột cờ. Kết quả đo của các bạn trong lớp được biểu diễn ở bảng sau:

Giải bài 2 trang 103 sách bài tập toán 12 - Chân trời sáng tạo 1

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 103 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)

‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).

Lời giải chi tiết

Ta có bảng sau:

Giải bài 2 trang 103 sách bài tập toán 12 - Chân trời sáng tạo 3

Cỡ mẫu \(n = 9 + 15 + 12 + 4 = 40\)

Số trung bình của mẫu số liệu ghép nhóm là:

\(\overline x = \frac{{9.4,95 + 15.5,05 + 12.5,15 + 4.5,25}}{{40}} = \frac{{2031}}{{400}} = 5,0775\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\({S^2} = \frac{1}{{40}}\left( {{{9.4,95}^2} + {{15.5,05}^2} + {{12.5,15}^2} + {{4.5,25}^2}} \right) - {5,0775^2} \approx 0,0085\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {0,0085} \approx 0,09\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2 trang 103 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2 trang 103 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 2 trang 103 sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học môn Toán lớp 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích hàm số, tìm điểm cực trị, và khảo sát sự biến thiên của hàm số. Việc nắm vững các khái niệm và kỹ năng liên quan đến đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.

Phân tích đề bài

Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta thực hiện một hoặc nhiều công việc sau:

  • Tính đạo hàm của hàm số.
  • Tìm điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm.

Lời giải chi tiết bài 2 trang 103

Để giải bài 2 trang 103 sách bài tập Toán 12 - Chân trời sáng tạo, chúng ta sẽ thực hiện theo các bước sau:

  1. Bước 1: Tính đạo hàm của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số.
  2. Bước 2: Tìm điểm cực trị của hàm số. Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  3. Bước 3: Khảo sát sự biến thiên của hàm số. Dựa vào dấu của đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Bước 4: Vẽ đồ thị hàm số. Sử dụng các thông tin đã tìm được để vẽ đồ thị hàm số.

Ví dụ minh họa:

Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước sau:

  • Bước 1: Tính đạo hàm: f'(x) = 3x2 - 6x
  • Bước 2: Tìm điểm cực trị: Giải phương trình f'(x) = 0, ta được x = 0 và x = 2. Vậy hàm số có hai điểm cực trị là x = 0 và x = 2.
  • Bước 3: Khảo sát sự biến thiên:
    • Khi x < 0, f'(x) > 0, hàm số đồng biến.
    • Khi 0 < x < 2, f'(x) < 0, hàm số nghịch biến.
    • Khi x > 2, f'(x) > 0, hàm số đồng biến.
  • Bước 4: Vẽ đồ thị: Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số.

Các dạng bài tập thường gặp

Ngoài bài tập trực tiếp yêu cầu giải bài 2 trang 103, học sinh có thể gặp các dạng bài tập tương tự, yêu cầu vận dụng kiến thức về đạo hàm để giải quyết các vấn đề khác. Một số dạng bài tập thường gặp bao gồm:

  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Khảo sát hàm số bậc ba, bậc bốn.

Mẹo giải bài tập

Để giải bài tập về đạo hàm một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:

  • Nắm vững các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu học tập, sách giáo khoa, và các trang web học toán online.

Kết luận

Bài 2 trang 103 sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải bài tập trên, bạn sẽ có thể giải quyết bài toán này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12