Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 25 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Tìm: a) (int {{{left( {3{rm{x}} - frac{1}{{{x^2}}}} right)}^2}dx} ); b) (int {left( {7{rm{x}}sqrt[3]{x} - frac{1}{{sqrt {{x^3}} }}} right)dx} left( {x > 0} right)); c) (int {{{left( {{3^{2{rm{x}}}} - 1} right)}^2}dx} ); d) (int {left( {2 - 3{{cos }^2}frac{x}{2}} right)dx} ).
Đề bài
Tìm:
a) \(\int {{{\left( {3{\rm{x}} - \frac{1}{{{x^2}}}} \right)}^2}dx} \); b) \(\int {\left( {7{\rm{x}}\sqrt[3]{x} - \frac{1}{{\sqrt {{x^3}} }}} \right)dx} \left( {x > 0} \right)\);
c) \(\int {{{\left( {{3^{2{\rm{x}}}} - 1} \right)}^2}dx} \); d) \(\int {\left( {2 - 3{{\cos }^2}\frac{x}{2}} \right)dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).
• \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
• \(\int {\cos xdx} = \sin x + C\).
Lời giải chi tiết
a)
\(\begin{array}{l}\int {{{\left( {3{\rm{x}} - \frac{1}{{{x^2}}}} \right)}^2}dx} = \int {\left( {9{{\rm{x}}^2} - \frac{6}{x} + \frac{1}{{{x^4}}}} \right)dx} = \int {\left( {9{{\rm{x}}^2} - 6.\frac{1}{x} + {x^{ - 4}}} \right)dx} \\ = 3{{\rm{x}}^3} - 6\ln \left| x \right| + \frac{{{x^{ - 3}}}}{{ - 3}} + C = 3{{\rm{x}}^3} - 6\ln \left| x \right| - \frac{1}{{3{{\rm{x}}^3}}} + C\end{array}\)
b) \(\int {\left( {7{\rm{x}}\sqrt[3]{x} - \frac{1}{{\sqrt {{x^3}} }}} \right)dx} = \int {\left( {7{{\rm{x}}^{\frac{4}{3}}} - {x^{ - \frac{3}{2}}}} \right)dx} = 7\frac{{{{\rm{x}}^{\frac{7}{3}}}}}{{\frac{7}{3}}} - \frac{{{x^{ - \frac{1}{2}}}}}{{ - \frac{1}{2}}} + C = 3{{\rm{x}}^2}\sqrt[3]{x} + \frac{2}{{\sqrt x }} + C\).
c)
\(\begin{array}{l}\int {{{\left( {{3^{2{\rm{x}}}} - 1} \right)}^2}dx} = \int {\left( {{3^{4{\rm{x}}}} - {{2.3}^{2{\rm{x}}}} + 1} \right)dx} = \int {\left( {{{81}^{\rm{x}}} - {{2.9}^{\rm{x}}} + 1} \right)dx} = \frac{{{{81}^{\rm{x}}}}}{{\ln 81}} - 2.\frac{{{9^{\rm{x}}}}}{{\ln 9}} + x + C\\ = \frac{{{3^{4{\rm{x}}}}}}{{4\ln 3}} - \frac{{{3^{{\rm{2x}}}}}}{{\ln 3}} + x + C\end{array}\)
d) \(\int {\left( {2 - 3{{\cos }^2}\frac{x}{2}} \right)dx} = \int {\left( {2 - 3.\frac{{1 + \cos {\rm{x}}}}{2}} \right)dx} = \int {\left( {\frac{1}{2} - \frac{3}{2}\cos {\rm{x}}} \right)dx} = \frac{1}{2}x - \frac{3}{2}\sin x + C\)
Bài 2 trang 25 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức và quy tắc đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 2 trang 25 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 25 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần:
Dưới đây là lời giải chi tiết bài 2 trang 25 sách bài tập Toán 12 Chân trời sáng tạo:
Đề bài: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2 tại x = 1.
Lời giải:
f'(x) = 2x + 3
f'(1) = 2(1) + 3 = 5
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 5.
Đề bài: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).
Lời giải:
g'(x) = cos(x) - sin(x)
Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).
Đề bài: Một vật chuyển động theo phương trình s(t) = t3 - 6t2 + 9t + 2, trong đó s(t) là quãng đường đi được sau thời gian t. Tính vận tốc của vật tại thời điểm t = 2.
Lời giải:
Vận tốc của vật là đạo hàm của quãng đường theo thời gian: v(t) = s'(t)
s'(t) = 3t2 - 12t + 9
v(2) = 3(2)2 - 12(2) + 9 = 12 - 24 + 9 = -3
Vậy, vận tốc của vật tại thời điểm t = 2 là -3.
Khi giải bài tập về đạo hàm, học sinh cần lưu ý:
Học sinh có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài 2 trang 25 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày ở trên, học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.