Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 12 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 7 trang 9, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 7 trang 9 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Một vật chuyển động thẳng dọc theo một đường thẳng (có gắn trục toạ độ (Ox) với độ dài đơn vị bằng 1 m). Biết rằng vật xuất phát từ vị trí ban đầu là gốc toạ độ và chuyển động với vận tốc (vleft( t right) = 8 - 0,4tleft( {m/s} right)), trong đó (t) là thời gian tính theo giây (left( {t ge 0} right)). a) Xác định toạ độ (xleft( t right)) của vật tại thời điểm (t,t ge 0). b) Tại thời điểm nào thì vật đi qua gốc toạ độ (không tính thời điểm ban đầu)?
Đề bài
Một vật chuyển động thẳng dọc theo một đường thẳng (có gắn trục toạ độ \(Ox\) với độ dài đơn vị bằng 1 m). Biết rằng vật xuất phát từ vị trí ban đầu là gốc toạ độ và chuyển động với vận tốc \(v\left( t \right) = 8 - 0,4t\left( {m/s} \right)\), trong đó \(t\) là thời gian tính theo giây \(\left( {t \ge 0} \right)\).
a) Xác định toạ độ \(x\left( t \right)\) của vật tại thời điểm \(t,t \ge 0\).
b) Tại thời điểm nào thì vật đi qua gốc toạ độ (không tính thời điểm ban đầu)?
Phương pháp giải - Xem chi tiết
Sử dụng công thức: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Lời giải chi tiết
a) \(x\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {8 - 0,4t} \right)dt} = 8t - 0,2{t^2} + C\).
Do vật xuất phát từ vị trí ban đầu là gốc toạ độ nên \(x\left( 0 \right) = 0 \Leftrightarrow 8.0 - {0,2.0^2} + C = 0 \Leftrightarrow C = 0\).
Vậy \(x\left( t \right) = 8t - 0,2{t^2}\).
b) Vật đi qua gốc toạ độ khi \(x\left( t \right) = 0 \Leftrightarrow 8t - 0,2{t^2} = 0 \Leftrightarrow t = 0\) hoặc \(t = 40\).
Vậy vật đi qua gốc toạ độ tại thời điểm \(t = 40\) giây (không tính thời điểm ban đầu).
Bài 7 trang 9 sách bài tập toán 12 Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa giới hạn, các tính chất của giới hạn và các dạng giới hạn cơ bản để tính toán giới hạn của các hàm số. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương trình toán học nâng cao hơn.
Bài 7 trang 9 sách bài tập toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 7 trang 9 một cách hiệu quả, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng dạng bài tập:
Ví dụ: Tính lim (2x + 1) khi x tiến tới 2.
Ví dụ: Tính lim (x^2 + 3x + 2) / (x - 1) khi x tiến tới 1.
Ví dụ: Tính lim (sin x) / x khi x tiến tới 0.
Áp dụng dạng giới hạn cơ bản: lim (sin x) / x = 1 khi x tiến tới 0.
Kết luận: lim (sin x) / x = 1 khi x tiến tới 0.
Bài 7 trang 9 sách bài tập toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn của hàm số. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong môn toán.