Logo Header
  1. Môn Toán
  2. Giải bài tập 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài tập 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài tập 10 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 10 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo một cách dễ dàng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán khoa học, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Các sản phẩm của một phân xưởng được đóng thành hộp, mỗi hộp gồm 10 sản phẩm. Các hộp sản phẩm được kiểm tra như sau: người ta lấy ra ngẫu nhiên 1 sản phẩm từ hộp, nếu sản phẩm đó xấu, hộp sẽ bị loại; nếu sản phẩm đó tốt, người ta sẽ chọn ngẫu nhiên thêm 1 sản phẩm khác từ hộp để kiểm tra. Hộp sẽ chỉ được chấp nhận nếu không có sản phẩm xấu nào trong các sản phẩm được chọn kiểm tra. Biết có một hộp chứa 2 sản phẩm xấu. Tính xác suất để hộp đó không được chấp nhận. Làm tròn kết quả đến hàng phầ

Đề bài

Các sản phẩm của một phân xưởng được đóng thành hộp, mỗi hộp gồm 10 sản phẩm. Các hộp sản phẩm được kiểm tra như sau: người ta lấy ra ngẫu nhiên 1 sản phẩm từ hộp, nếu sản phẩm đó xấu, hộp sẽ bị loại; nếu sản phẩm đó tốt, người ta sẽ chọn ngẫu nhiên thêm 1 sản phẩm khác từ hộp để kiểm tra. Hộp sẽ chỉ được chấp nhận nếu không có sản phẩm xấu nào trong các sản phẩm được chọn kiểm tra.

Biết có một hộp chứa 2 sản phẩm xấu. Tính xác suất để hộp đó không được chấp nhận. Làm tròn kết quả đến hàng phần trăm.

Phương pháp giải - Xem chi tiếtGiải bài tập 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng công thức: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\).

Lời giải chi tiết

Gọi \(A\) là biến cố “Sản phẩm được chọn đầu tiên là xấu”, \(B\) là biến cố “Sản phẩm được chọn thứ hai là xấu”.

Hộp đó chứa 2 sản phẩm xấu trong tổng số 10 sản phẩm nên ta có \(P\left( A \right) = \frac{2}{{10}} = 0,2\).

Do đó \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - 0,2 = 0,8\).

Nếu sản phẩm đầu tiên là tốt thì còn lại 2 sản phẩm xấu, 7 sản phẩm tốt. Khi đó hộp chứa 2 sản phẩm xấu trong tổng số 9 sản phẩm ta có \(P\left( {B|\overline A } \right) = \frac{2}{9}\).

Theo công thức nhân xác suất, ta có \(P\left( {\overline A B} \right) = P\left( {\overline A } \right)P\left( {B|\overline A } \right) = 0,8.\frac{2}{9} = \frac{8}{{45}}\).

Một hộp không được chấp nhận nếu sản phẩm được chọn đầu tiên là xấu hoặc sản phẩm được chọn đầu tiên là tốt và sản phẩm được chọn thứ hai là xấu. Vậy xác suất để hộp đó không được chấp nhận là: \(P = P\left( A \right) + P\left( {\overline A B} \right) = 0,2 + \frac{8}{{45}} = \frac{{17}}{{45}} \approx 0,38\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 10 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài tập 10 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm, quy tắc tính đạo hàm, và các phương pháp giải phương trình, bất phương trình để tìm ra nghiệm và phân tích tính chất của hàm số.

Nội dung bài tập 10 trang 80

Bài tập 10 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm bậc nhất, bậc hai của hàm số cho trước.
  • Khảo sát hàm số: Xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn của hàm số.
  • Giải phương trình, bất phương trình: Sử dụng đạo hàm để giải các phương trình, bất phương trình liên quan đến hàm số.
  • Ứng dụng đạo hàm vào thực tế: Giải các bài toán tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Phương pháp giải bài tập 10 trang 80

Để giải bài tập 10 trang 80 hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn giản như hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  2. Quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  3. Điều kiện cần và đủ để hàm số đạt cực trị: Sử dụng đạo hàm bậc nhất để tìm điểm cực trị, sau đó kiểm tra điều kiện cần và đủ để xác định loại cực trị.
  4. Điều kiện để hàm số có điểm uốn: Sử dụng đạo hàm bậc hai để tìm điểm uốn.

Ví dụ minh họa

Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đồng biến của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm nghiệm của phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Lập bảng xét dấu y':
    x-∞02+∞
    y'+-+
  4. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng các công thức đạo hàm và quy tắc tính đạo hàm một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải bài toán.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm và ứng dụng của đạo hàm

Kết luận

Giải bài tập 10 trang 80 Sách bài tập Toán 12 - Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12