Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 13 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức (Pleft( q right) = - {q^3} + 24{q^2} + 780q - 5000) (nghìn đồng) trong đó (q) (kg) là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất được tối đa 50 kg sản phẩm trong một tuần. a) Xưởng sản xuất càng nhiều thì lợi nhuận càng cao. b) Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần. c) Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức \(P\left( q \right) = - {q^3} + 24{q^2} + 780q - 5000\) (nghìn đồng) trong đó \(q\) (kg) là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất được tối đa 50 kg sản phẩm trong một tuần. a) Xưởng sản xuất càng nhiều thì lợi nhuận càng cao. b) Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần. c) Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất thêm thì lợi nhuận càng giảm. d) Lợi nhuận của xưởng thấp nhất khi không sản xuất.
Phương pháp giải - Xem chi tiết
Lập bảng biết thiên của hàm số hàm số \(P\left( q \right)\) trên đoạn \(\left[ {0;50} \right]\), xét tính đơn điệu, tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(P\left( q \right)\) trên đoạn \(\left[ {0;50} \right]\).
Lời giải chi tiết
Xét hàm số \(P\left( q \right) = - {q^3} + 24{q^2} + 780q - 5000\) trên đoạn \(\left[ {0;50} \right]\).
Ta có:
\(P'\left( q \right) = - 3{q^2} + 48q + 780\)
\(P'\left( q \right) = 0 \Leftrightarrow q = 26\) hoặc \(q = - 0\) (loại)
Bảng biến thiên:
Vậy \(\mathop {\max }\limits_{\left[ {0;50} \right]} P\left( q \right) = P\left( {26} \right) = 13928,\mathop {\min }\limits_{\left[ {0;50} \right]} P\left( q \right) = P\left( {50} \right) = - 31000\).
Vậy lợi nhuận tăng khi sản xuất từ 0 đến 26 sản phẩm, lợi nhuận giảm khi sản xuất từ 26 đến 50 sản phẩm. Vậy a) sai, c) đúng.
Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần. Vậy b) đúng.
Lợi nhuận của xưởng thấp nhất khi sản xuất 50 kg sản phẩm trong một tuần. Vậy d) sai.
a) S.
b) Đ.
c) Đ.
d) S.
Bài 13 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng các công thức đạo hàm, quy tắc tính đạo hàm và các phương pháp giải phương trình, bất phương trình để tìm ra đáp án chính xác.
Bài 13 trang 35 thường bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hàm số y = x3 - 3x2 + 2. Hãy tìm đạo hàm của hàm số.
Lời giải:
y' = 3x2 - 6x
Tìm cực đại, cực tiểu của hàm số y = x3 - 3x2 + 2.
Lời giải:
Để giải các bài tập về đạo hàm một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 13 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà chúng tôi cung cấp, các bạn học sinh sẽ tự tin hơn khi giải các bài tập tương tự.