Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2 theo chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 1 trang 11, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất trong môn Toán.
Tính đạo hàm của hàm số (Fleft( x right) = x{e^x}), suy ra nguyên hàm của hàm số (fleft( x right) = left( {x + 1} right){e^x}).
Đề bài
Tính đạo hàm của hàm số \(F\left( x \right) = x{e^x}\), suy ra nguyên hàm của hàm số \(f\left( x \right) = \left( {x + 1} \right){e^x}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức đạo hàm để tính \(F'\left( x \right)\), sau đó kết luận.
Lời giải chi tiết
Ta có \(F'\left( x \right) = \left( {x{e^x}} \right)' = {e^x} + x{e^x} = {e^x}\left( {x + 1} \right) = f\left( x \right)\).
Suy ra \(\int {f\left( x \right)dx} = \int {\left( {x + 1} \right){e^x}dx} = x{e^x} + C\).
Bài tập 1 trang 11 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán cụ thể. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài tập 1 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính đạo hàm của các hàm số đã cho. Các hàm số này có thể ở dạng đơn giản hoặc phức tạp hơn, đòi hỏi học sinh phải áp dụng các quy tắc đạo hàm như quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và đạo hàm của các hàm số lượng giác, hàm mũ, hàm logarit.
Ví dụ: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2.
Giải:
Ngoài SGK Toán 12 tập 2 - Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức về đạo hàm:
Bài tập 1 trang 11 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên đây, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán.